класс. Повторительно-обобщающий урок.
⦁ Найдите углы прямоугольной трапеции, если один из ее углов равен 20°.
⦁ Периметр параллелограмма 60 см. Одна из его сторон на 6 см меньше другой. Найдите длины сторон параллелограмма.
⦁ Катеты прямоугольного треугольника равны 6 и 8 см. Найдите гипотенузу и площадь треугольника.
⦁ В треугольнике ABC сторона АВ = 4 см, ВС = 7 см, АС = 6см, а в треугольнике MNKсторона МК = 8 см, MN =12 см, KN = 14 см. Найдите углы треугольника MNK, если A= 80°, B= 60°.
⦁ Сторона параллелограмма равна 21 см, а высота, проведенная к ней 15 см. Найдите площадь параллелограмма.
Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников:
1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС
2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота.
3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.
Радиус окружности описанной вокруг равностороннего треугольника находится по формуле:
R=√3/3 - где а-сторона треугольника
Высота в таком треугольнике можно найти по формуле:
h=√3/a*a - где а -сторона треугольника
По этой формуле найдём сторону равностороннего треугольника:
а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см)
Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности:
R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
ответ: Высота данного треугольника равна 2см