Из определения: прямая, параллельная плоскости, не имеет общих с плоскостью точек.отсюда следует: (1) a||b или (2) у a и b нет общих точек(скрещивающиеся). докажем (2), а заодно и опровергнем возможность пересечения. пусть a пересекает b, значит существует общая для a и b точка b, являющаяся точкой пересечения прямых. bлежит на плоскости, значит каждая точка, принадлежащая b, пренадлежитплоскости альфа (в частности в). следовательно у a и альфа есть общаяточка b, значит a не параллельна плоскости альфа по определению. противоречие. доказано - a не пересекает b.
Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота. Сторона параллелограмма дана ВС=19. Необходимо найти высоту h. Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ. Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ. Соединим концы биссектрис углов А и В и обозначим буквами M и N. Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов. Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14. Площадь равна 14*19
Сторона параллелограмма дана ВС=19.
Необходимо найти высоту h.
Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ.
Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ.
Соединим концы биссектрис углов А и В и обозначим буквами M и N.
Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов.
Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14.
Площадь равна 14*19