Сказка о четырехугольниках Как известно, Арифметика – царица всей математики, очень постарела и почти отжила свой век. К этому времени подросла ее внучка – красивая, величественная Геометрия. Чтобы взойти на трон, нужен ей был сильный и богатый Наслышана была Геометрия об интересных свойствах четырехугольников. Пригласила Геометрия четырехугольников к себе в царство математики испытать счастье. Но путь был долгий, трудный. Вместе с параллелограммом, ромбом, прямоугольником и квадратом отправилась и старая упрямая равнобедренная трапеция. Сначала они должны были лететь самолетом. Но в самолет попали только те, у кого противоположные стороны были попарно параллельны и диагонали точек пересечения делятся пополам. (Какие четырехугольники отправились самолетом?) Трапеция не стала отчаиваться, она поехала поездом. Из-за плохой погоды самолет сделал вынужденную посадку, и здесь пришлось четырехугольникам пройти дополнительные испытания. Трудности преодолели четырехугольники, у которых диагонали взаимно перпендикулярны и являются биссектрисами углов, и четырехугольники, у которых диагонали равны. (Кто остался?) Во дворец пустили не всех. Было главное условие: диагонали должны быть равными. (Кто во дворец?) К этому моменту прибыла и трапеция. Ее тоже пустили, т.к. у равнобедренной трапеции диагонали равны. Геометрия приказала четырехугольникам перечислить все свои свойства. Трапеция сказала: «У меня диагонали равны и углы при основании равны». Прямоугольник сказал: «У меня диагонали равны и точкой пересечения делятся пополам. Противоположные стороны равны и все углы прямые». Квадрат нежно добавил: «А я обладаю всеми свойствами параллелограмма, ромба и прямоугольника одновременно». Геометрия была в восторге, что квадрат был богат на свойства и со своими прямыми углами так хорошо сидел на троне. И он был провозглашен царицы в царстве математики. Прямоугольник был назначен главным садовником, а трапеция стала самой главной на кухне. Параллелограмм и ромб – 2 брата – знают, что без них сказки бы и не было.
Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
Сказка о четырехугольниках Как известно, Арифметика – царица всей математики, очень постарела и почти отжила свой век. К этому времени подросла ее внучка – красивая, величественная Геометрия. Чтобы взойти на трон, нужен ей был сильный и богатый Наслышана была Геометрия об интересных свойствах четырехугольников. Пригласила Геометрия четырехугольников к себе в царство математики испытать счастье. Но путь был долгий, трудный. Вместе с параллелограммом, ромбом, прямоугольником и квадратом отправилась и старая упрямая равнобедренная трапеция. Сначала они должны были лететь самолетом. Но в самолет попали только те, у кого противоположные стороны были попарно параллельны и диагонали точек пересечения делятся пополам. (Какие четырехугольники отправились самолетом?) Трапеция не стала отчаиваться, она поехала поездом. Из-за плохой погоды самолет сделал вынужденную посадку, и здесь пришлось четырехугольникам пройти дополнительные испытания. Трудности преодолели четырехугольники, у которых диагонали взаимно перпендикулярны и являются биссектрисами углов, и четырехугольники, у которых диагонали равны. (Кто остался?) Во дворец пустили не всех. Было главное условие: диагонали должны быть равными. (Кто во дворец?) К этому моменту прибыла и трапеция. Ее тоже пустили, т.к. у равнобедренной трапеции диагонали равны. Геометрия приказала четырехугольникам перечислить все свои свойства. Трапеция сказала: «У меня диагонали равны и углы при основании равны». Прямоугольник сказал: «У меня диагонали равны и точкой пересечения делятся пополам. Противоположные стороны равны и все углы прямые». Квадрат нежно добавил: «А я обладаю всеми свойствами параллелограмма, ромба и прямоугольника одновременно». Геометрия была в восторге, что квадрат был богат на свойства и со своими прямыми углами так хорошо сидел на троне. И он был провозглашен царицы в царстве математики. Прямоугольник был назначен главным садовником, а трапеция стала самой главной на кухне. Параллелограмм и ромб – 2 брата – знают, что без них сказки бы и не было.