Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Средняя линия равна половине основания, следовательно основания равны 12,18 и 20 соответственно, тогда периметр будет Р=12+18+20=50см ответ 50
опустим из вершины с на ад перпендикуляр: Δаве=Δдск⇒ АЕ=ДК=(17-5)/2=6 ответ 6
∠САД=∠АСВ=28° как внутренние накрестлежащие в Δавс ∠ВАС=АСВ=28° как углы при основании равнобедренногоΔ ∠ВАД=∠СДА∠ВАС+∠АСВ=28+28=56° как углы при основании равнобедренной трапеции ∠АВС=∠ВСД=(360-2*56)/2=(360-112)/2=248/2=124° ответ 59°,59°,124°,124°
пусть ВС =х, тогда АД =х+6 Сред линяя равна МК=(х+х+6)/2, а по условию 7см составим и решим уравнение 2х+6 / 2=7 2х+6=7*2 2х=14-6 х=8/2 х=4, значит вс=4, тогла ад=10 ΔАСД и ΔАСК подобны(т.к СК=1/2СД ∠С общий ∠СКО=∠СДА)⇒СО=1/2СА т.е ОК - средняя линия ΔАСД⇒ ОК=1/2АД=1/2*10=5 МО=МК-ОК=7-5=2 ответ 5 и 2
ΔАВС и КВМ подобны(тк ∠В - общий, КВ=1/3АВ, МВ=1/3СВ) ⇒КМ=1/3АС=1/3*9=3см ΔАВС и ОВN подобны(тк ∠В - общий,OВ=2/3АВ, NВ=2/3СВ) ⇒ON=2/3АС=2/3*9=6см ответ 3 и 6
Объяснение:
а)
Тр-к АВО=тр-ку СВО - прямоугольные
АО=СО - по условию
<ВАО=<ВСО - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
2
Тр-к равнобедренный
Р=3,2 м
Боковая сторона = b м
Основание а=( b-1) м
Найти : а ; b
Р=2b+a
3,2=2b+(b-1)
3,2=2b+b-1
3,2=3b-1
3b=3,2+1
3b=4,2
b=1,4 м - боковая сторона
а=1,4-1=0,4 м - основание
ответ : 1,4 м ; 1,4 м ; 0,4 м
Р=12+18+20=50см
ответ 50
опустим из вершины с на ад перпендикуляр: Δаве=Δдск⇒
АЕ=ДК=(17-5)/2=6
ответ 6
∠САД=∠АСВ=28° как внутренние накрестлежащие
в Δавс ∠ВАС=АСВ=28° как углы при основании равнобедренногоΔ
∠ВАД=∠СДА∠ВАС+∠АСВ=28+28=56° как углы при основании равнобедренной трапеции
∠АВС=∠ВСД=(360-2*56)/2=(360-112)/2=248/2=124°
ответ 59°,59°,124°,124°
пусть ВС =х, тогда АД =х+6 Сред линяя равна
МК=(х+х+6)/2, а по условию 7см
составим и решим уравнение
2х+6 / 2=7
2х+6=7*2
2х=14-6
х=8/2
х=4, значит вс=4, тогла ад=10
ΔАСД и ΔАСК подобны(т.к СК=1/2СД ∠С общий ∠СКО=∠СДА)⇒СО=1/2СА
т.е ОК - средняя линия ΔАСД⇒ ОК=1/2АД=1/2*10=5
МО=МК-ОК=7-5=2
ответ 5 и 2
ΔАВС и КВМ подобны(тк ∠В - общий, КВ=1/3АВ, МВ=1/3СВ)
⇒КМ=1/3АС=1/3*9=3см
ΔАВС и ОВN подобны(тк ∠В - общий,OВ=2/3АВ, NВ=2/3СВ)
⇒ON=2/3АС=2/3*9=6см
ответ 3 и 6