Окружности будут равные, т.к. их диаметры равны, как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)) центры окружностей расположены на биссектрисах соотв углов: CO1, DO1, CO2, DO2 CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов))) аналогично CO2 _|_ DO2 CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2 радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции))) отрезки касательных к окружности, проведенных из одной точки, равны)))
Дано: АС=4 см, ВС=10 см; ВН=5,5 см Найти: АК-? Построение: Так как в условии сказано об удалении точек от ребра двугранного угла, то прямые АС и ВС перпендикулярны к прямой z, содержащей ребро двугранного угла. Удаление точки от другой грани, говорит о том, что ВН перпендикулярно плоскости α и в частности прямой АС, а АК перпендикулярно плоскости β и в частности прямой ВС. Можно спроецировать весь этот рисунок на плоскость, перпендикулярную плоскостям α и β. Решение: Имеется два треугольника ВСН и АСК с общим углом С. Рассмотрим синус (отношение противолежащего катета к гипотенузе) угла С для двух этих треугольников:
Левые части этих соотношенйи равны, так как речь идет об одном и том же углы, значит равны и их правые части:
Три отрезка из четырех даны по условию, длину четвертого нужно найти:
Уточнение: в условии не сказано какая именно из двух точек (удаленная от ребра на 4 см или на 10 см) удалена от второй грани на 5,5 см, но если предположить, что АС=10 см, ВС=4 см, то , чего не может быть. ответ: 2,2 см
центры окружностей расположены на биссектрисах соотв углов: CO1, DO1, CO2, DO2
CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов)))
аналогично CO2 _|_ DO2
CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2
радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции)))
отрезки касательных к окружности, проведенных из одной точки, равны)))
Найти: АК-?
Построение: Так как в условии сказано об удалении точек от ребра двугранного угла, то прямые АС и ВС перпендикулярны к прямой z, содержащей ребро двугранного угла. Удаление точки от другой грани, говорит о том, что ВН перпендикулярно плоскости α и в частности прямой АС, а АК перпендикулярно плоскости β и в частности прямой ВС. Можно спроецировать весь этот рисунок на плоскость, перпендикулярную плоскостям α и β.
Решение: Имеется два треугольника ВСН и АСК с общим углом С. Рассмотрим синус (отношение противолежащего катета к гипотенузе) угла С для двух этих треугольников:
Левые части этих соотношенйи равны, так как речь идет об одном и том же углы, значит равны и их правые части:
Три отрезка из четырех даны по условию, длину четвертого нужно найти:
Уточнение: в условии не сказано какая именно из двух точек (удаленная от ребра на 4 см или на 10 см) удалена от второй грани на 5,5 см, но если предположить, что АС=10 см, ВС=4 см, то , чего не может быть.
ответ: 2,2 см