Ну смотри, угол А относится к углу B, как 2:1. Потому что угол А мы взяли два раза, тоесть две части, два угла B, а угол B, поkучается, как одна часть, один раз он взят. Теперь решаем: Знаем, что сумма углов, прилежащих к одной стороне равна 180 градусов. Посчитаем кол-во частей: 2+1=3, все части между собой равны, так как это по сути три уголка B/ Теперь 180 градусов поделим на кол-во частей: 180:3=60 град. - это одна часть. Смотрим, угол А состоит из двух частей, значит 60*2=120 град. угол В - 60 град. В параллелограмме противоположные углы равны
В равностороннем треугольнике ABC проведём высоту BH. Пусть сторона треугольника равна a. Рассмотрим прямоугольный треугольник ABH. В нём гипотенуза AB равна a, катет AH равен a/2, так как в равностороннем треугольнике высота BH является также медианой и делит сторону AC на две равные части. По теореме Пифагора, высота BH равна √a²-(a/2)²=√3a/2. Значит, для равностороннего треугольника верно равенство h=√3a/2, где h - высота треугольника, а - его сторона.
Пусть стороны треугольников из условия равны a и b, при этом их высоты равны h. Тогда h=√3a/2=√3b/2, откуда a=b. Значит, из равенства высот двух равносторонних треугольников следует равенство их сторон, тогда треугольники равны по трём сторонам, что и требовалось доказать.
Знаем, что сумма углов, прилежащих к одной стороне равна 180 градусов.
Посчитаем кол-во частей: 2+1=3, все части между собой равны, так как это по сути три уголка B/
Теперь 180 градусов поделим на кол-во частей: 180:3=60 град. - это одна часть.
Смотрим, угол А состоит из двух частей, значит 60*2=120 град.
угол В - 60 град.
В параллелограмме противоположные углы равны
Пусть стороны треугольников из условия равны a и b, при этом их высоты равны h. Тогда h=√3a/2=√3b/2, откуда a=b. Значит, из равенства высот двух равносторонних треугольников следует равенство их сторон, тогда треугольники равны по трём сторонам, что и требовалось доказать.