Утверждения,которые выводятся непосредственно из аксиом или теорем,называются следствиями.
Если прямая пересекает одну из двух параллельных прямых,то она пересекает и другую.
Доказательство: Пусть прямыеa и параллельны и прямая с пересекает прямую а в точке М.Докажем,что прямая спересекает и прямую b.Если бы прямая с не пересекала прямуюb, то через точку М проходили бы две прямые(прямые а ис),параллельные прямой b.Но это противоречит аксиоме параллельных прямых , и, значит, прямая с пересекает прямую b
1)Аксиома на плоскости через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной 3)1.док-во преположим обратное. угол 1 не равен углу 2 2.доп.постр. построим через точку А прямую а1 которая пересекается с прямой C под углом равным углу первому, то есть угол 3 равен углу 1 3.получили: прямая а1 и в с-секущая угол 1 и угол 3 внутр.накрест лежащие угол 1 равен углу 3, след.а1 || в по признаку 4.получили: через точку А не лежащую на прямой B проходит две прямые а и a1 параллельные прямой в(а ||в по усл.,а1||в по док.) что противоречит аксиомы параллельных прямых след. предположение сделано неверно и остается утверждать что угол 1 равен углу 2 это точно правильно,так как уже проходили)
Если прямая пересекает одну из двух параллельных прямых,то она пересекает и другую.
Доказательство: Пусть прямыеa и параллельны и прямая с пересекает прямую а в точке М.Докажем,что прямая спересекает и прямую b.Если бы прямая с не пересекала прямуюb, то через точку М проходили бы две прямые(прямые а ис),параллельные прямой b.Но это противоречит аксиоме параллельных прямых , и, значит, прямая с пересекает прямую b
на плоскости через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной
3)1.док-во
преположим обратное. угол 1 не равен углу 2
2.доп.постр.
построим через точку А прямую а1 которая пересекается с прямой C под углом равным углу первому, то есть угол 3 равен углу 1
3.получили:
прямая а1 и в
с-секущая
угол 1 и угол 3 внутр.накрест лежащие
угол 1 равен углу 3,
след.а1 || в по признаку
4.получили:
через точку А не лежащую на прямой B проходит две прямые а и a1 параллельные прямой в(а ||в по усл.,а1||в по док.) что противоречит аксиомы параллельных прямых след. предположение сделано неверно и остается утверждать что угол 1 равен углу 2
это точно правильно,так как уже проходили)