По условию АС=9 см; ВD=12 см; m=7,5 см; m=(AD+BC)/2; AD+BC=7,5*2=15 см; Проведем из вершины C на AD высоту CK. Проведем через вершину С прямую, параллельную диагонали ВD. Пусть F - точка пересечения этой прямой с продолжением АD. ВСFD - параллелограмм, так как BC||DF и BD||CF. СF = ВD = 12 см; DF=BC; Площадь трапеции АВСD равна S(ABCD)=m*CK; Площадь треугольника АСF равна S(ACF)=АF*CK/2=(AD+DF)*CK/2=m*CK; Значит, S(ABCD)=S(ACF); В треугольникеACF: AF=AD+DF=AD+BC=15 см; АС=9 см; СF=12 см; Зная три стороны площадь треугольника можно найти по формуле Герона. р=(15+9+12):2=18 - полупериметр; S(ACF)=√18*(18-15)*(18-12)*(18-9)= √18*3*6*9=√9*6*6*9=9*6=54 см^2; Но можно поступить проще. Можно заметить, что треугольник со сторонами 9; 12 и 15 см - это прямоугольный треугольник (15^2=9^2+12^2). Поэтому площадь треугольника АСF равна половине произведения катетов. S(ACF)=AC*CF/2=9*12/2=54 см^2; ответ: 54
Для тех, кто не любит делать решения с рисунками. Есть формула радиуса описанной окружности равнобедренного треугольника: R=a²/√(4a²-b²) (1). Формула площади для такого треугольника: S=a²/(4*R) (2). По первой находим боковую сторону, по второй - искомую площадь. Итак, 25=(a²)²/(4a²-64). Пусть а²=х, тогда имеем: 25*(4х-64)=х². Квадратное уравнение х²-100х+1600=0 имеет два корня (стандартное решение опускаю): х1=80 и х2=20. Подставляем эти значения в формулу (2): S1=80*8/20=32. S2=20*8/20=8. ответ: площадь данного нам треугольника АВС может быть S1=8 ед² и S2=32 ед².
Есть формула радиуса описанной окружности равнобедренного треугольника:
R=a²/√(4a²-b²) (1).
Формула площади для такого треугольника:
S=a²/(4*R) (2).
По первой находим боковую сторону, по второй - искомую площадь.
Итак, 25=(a²)²/(4a²-64). Пусть а²=х, тогда имеем: 25*(4х-64)=х².
Квадратное уравнение х²-100х+1600=0 имеет два корня (стандартное решение опускаю):
х1=80 и х2=20.
Подставляем эти значения в формулу (2):
S1=80*8/20=32.
S2=20*8/20=8.
ответ: площадь данного нам треугольника АВС может быть
S1=8 ед² и S2=32 ед².