Контрольна робота No 5
Многокутники. Площі многокутників
1. Знайти суму кутів п’ятнадцятикутника. ( )
2. Скільки вершин у n-кутника, якщо сума його кутів дорівнює 2880° ? ( )
3. Знайти площу прямокутника, якщо ширина дорівнює 13 дм, а його
периметр дорівнює 62 дм. ( )
4. Площа паралелограма дорівнює 243 см2, а одна з його сторін 27 см. Знайти
висоту,проведену до цієї сторони. ( )
5. Зайдіть площу трикутника, якщо його сторона дорівнює 16,5 см, а висота
проведена до цієї сторони – 8,8 см. ( )
6. Основи трапеції дорівнюють а і b, а висота – с . Знайти площу трапеції,
якщо: а = 14 см, b = 0,5 а, h = 8 см. ( )
7. Площа прямокутного трикутника S, а його катети відносяться, як а : b.
Знайдіть катети, якщо S = 1296 см2, a = 9, b = 8. ( )
8. Площа ромба дорівнює 108 см2. Знайдіть його діагоналі, якщо вони
відносяться, як 2 : 3. ( )
9. Основа трикутника дорівнює 18 см, а висота – 20 см. Знайдіть площу
трикутника, утвореного середніми лініями даного трикутника. ( )
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8