Её можно тупо сосчитать по формуле Герона, а можно и сообразить, что треугольник "составлен" из двух Пифагоровых треугольников со сторонами (5,12,13) и (9,12,15), так, что катет 12 у них общий, а катеты 5 и 9 вместе составляют сторону 14 исходного треугольника.
То есть высота к стороне 14 равна 12.
Итак, площадь треугольника S = 14*12/2 = 84;
Полупериметр равен (13 + 14 + 15)/2 = 21;
Поэтому радиус вписанной окружности равен r = 84/21 = 4;
Сечение шара плоскостью треугольника как раз и дает нам круг, ограниченный вписанной окружностью. При этом радиус этой окружности r, расстояние d от центра до плоскости сечения (до плоскости треугольника) и радиус шара R связаны теоремой Пифагора.
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
Для решения задачи нужна площадь треугольника.
Её можно тупо сосчитать по формуле Герона, а можно и сообразить, что треугольник "составлен" из двух Пифагоровых треугольников со сторонами (5,12,13) и (9,12,15), так, что катет 12 у них общий, а катеты 5 и 9 вместе составляют сторону 14 исходного треугольника.
То есть высота к стороне 14 равна 12.
Итак, площадь треугольника S = 14*12/2 = 84;
Полупериметр равен (13 + 14 + 15)/2 = 21;
Поэтому радиус вписанной окружности равен r = 84/21 = 4;
Сечение шара плоскостью треугольника как раз и дает нам круг, ограниченный вписанной окружностью. При этом радиус этой окружности r, расстояние d от центра до плоскости сечения (до плоскости треугольника) и радиус шара R связаны теоремой Пифагора.
R^2 = r^2 + d^2;
Отсюда d = 3; (тут Пифагорова тройка 3,4,5)
Объяснение:
1)
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
1536+384=1920 (дц²)