Контрольная работа № 5по теме: « построения».вариант 41. угол при вершине равнобедренного треугольника в 2 раза большеугла при вершине основания. найдите все углы треугольника.2°. ас - касательная, ab – хорда окружности с центром в точке 0,«aob = 120°. чему равен 2сав? 3. постройте равнобедренный треугольник по основанию и высоте, про-ведённой из вершины противолежащей основанию.4. дан равнобедренный давс с основанием ас и высотой bd. на лу-чах ва и вс вне давс отложены равные отрезки am и cn. луч bdпересекает отрезок mn в точке 0. докажите, что во – высота дмвn.
Полная поверхность цилиндра может быть вычислена по формуле
S=2πR*(R+h) =6R*(R+h)=9.9⇒6R²+6Rh=9.9
Объем цилиндра можем найти по формуле V=πR²h
Из формулы поверхности выразим высоту через радиус и подставим в формулу объема. Получим функцию от переменной R, которую исследуем на наибольшее значение, по стандарту.
6R²+6Rh=9.9⇒6Rh=9.9-6R²; h=(1.65/R) - R.
v=πR²* (1.65/R)-R )=3( 1.65R-R³)
Найдем максимум функции V(R) .Найдем критические точки функции.
v'=(3(1.65R-R³))'=3*1.65-3*3R²
3*(1.65-3R²)=0 , R²=1.65/3=0.55
R=√0.55≈0.7
00.7
+ -
Т.к. при переходе через критическую точку R=0,7
производная меняет знак с плюса на минус, и других критических точек нет, то R=0,7 -точка максимума, и в ней функция достигает наибольшее значение
V=3(1.65*0.7 -0.7³ )=3*(1.155-0.343)=0.812*3≈2.4/см³/
ответ ≈2,4см³
Дуга равна соответственному центральному углу.
∪CA = 360°−∪AB−∪BC = 360−96−106 = 158°
I — центр вписанной окружности в треугольник; IA = IB = IC — радиусы.
∢AIC = ∪CA = 158°; ∢AIB = ∪AB = 96°; ∢BIC = ∪BC = 106°
IA ⊥ LM, IB ⊥ MN, IC ⊥ NL (радиус ⊥ к касательной)
∢IAM = ∢MBI = ∢IBN = ∢NCI = ∢ICL = ∢LAI = 90°
∢L= 360°−∢AIC−∢LAI−∢ICL = 360−158−90−90 = 360−180−158 =180(2-1)-158=180-158 = 22° (из 4-угольника AICL)
аналогично для других углов:
∢ M= 180−96 = 84°
∢ N= 180−106 = 74°
∢L= 22°∢M = 84°∢N = 74°∪CA = 158°