Контрольная работа на тему: «Движение» 2 вариант.
1.Дан прямоугольник ABCD. Постройте фигуру, на которую отображается этот прямоугольник:
а) при центральной симметрии с центром С;
б) при осевой симметрии с осью BС.
2. Дан квадрат ABCD , О - точка пересечения диагоналей. Постройте фигуру, которая получается из этого квадрата при параллельном переносе на (OC) ⃗
3. Дан треугольник MNK. Постройте фигуру, в которую он переходит при повороте на 90 ̊ против часовой стрелке вокруг точки М.
4. Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2 и А4А5,А2А3 и А5А6, А3А4 и А6А1 попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали А1А4, А2А5, А3А6 данного шестиугольника пересекаются в одной точке.
плз . желательно до 31 февраля 15:00
Рассмотрим треугольники ADC, BDC, CDB, составляющие грани тетраэдра. Каждый треугольник проведенным в нем отрезком делится на два подобных треугольника, т.к. тот отрезок - средняя линия треугольника и потому параллелен основанию.
Соединив точки К, Е и М, получим треугольник КЕМ, плоскость которого параллельна плоскости АDВ по свойству пересекающихся прямых:
· Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.
Δ АDВ и Δ КЕМ подобны по всем трем признакам подобия треугольников.
Отношения площадей подобных треугольников равно квадрату коэффициента их подобия. Так как стороны образующих грани треугольников относятся как 2:1, то площади Δ АDВ и Δ КЕМ относястя как 4:1.
Площадь треугольника ADB больше площади треугольника КЕМ в 4 раза и равна27·4=108 см²
Площадь полной поверхности призмы равна сумме площади боковой поверхности и площади двух оснований.
Основание призмы равно половине равностороннего треугольника, т.к. один из углов прямой, другой равен 30°, а третий, как следствие, 60°.
Следовательно, площадь двух оснований призмы равна площади полного равностороннего треугольника с высотой 8.
Площадь равностороннего треугольника, выраженная через высоту,
S=h ² : √ 3= 64 : √ 3
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Высота равна 8, т.к. диагональ грани со сторонами, равными высоте и катету=8, образует со сторонами грани угол 45 градусов, и стороны грани равны.
Дальнейшие вычисления особой сложности не представляют, сумеете сделать их самостоятельно.