Контрольная работа на тему: «Движение» 2 вариант.
1.Дан прямоугольник ABCD. Постройте фигуру, на которую отображается этот прямоугольник:
а) при центральной симметрии с центром С;
б) при осевой симметрии с осью BС.
2. Дан квадрат ABCD , О - точка пересечения диагоналей. Постройте фигуру, которая получается из этого квадрата при параллельном переносе на (OC) ⃗
3. Дан треугольник MNK. Постройте фигуру, в которую он переходит при повороте на 90 ̊ против часовой стрелке вокруг точки М.
4. Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2 и А4А5,А2А3 и А5А6, А3А4 и А6А1 попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали А1А4, А2А5, А3А6 данного шестиугольника пересекаются в одной точке.
плз . желательно до 31 февраля 15:00
Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180, ∠B + ∠C = 180, ∠C + ∠D = 180, ∠D + ∠A = 180.
Противоположные стороны попарно равны и параллельны: AB = CD, AB || CD.
Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
Противоположные стороны попарно параллельны: AB || CD, AD || BC. 3) вроде у которого все стороны равны 4) Трапеция — четырёхугольник, у которого только одна пара противолежащих сторон параллельна. 6) Равнобедренная когда равны боковые стороны. Прямоугольная имеет прямой угол.
a — нижнее основание
b — верхнее основание
с — средняя линия
d — боковая сторона
h — высота
S — площадь трапеции
P — периметр трапеции,
тогда получаем:
S=c*h, с=(a+b)/2 (средняя линия равна полусумме оснований). Тогда получаем:
S=(a+b)*h/2
Отссюда h=2*S/(a+b)
Теперь напишем формулу для периметра:
P=a+b+2*d, отсюда
a+b=P-2*d
Подставляем эту формулу в формулу h=2*S/(a+b) и получаем:
h=2*S/(P-2*d)=2*44/(32-2*5)=4 если благодарность