AD = 28.
ВС = 8.
Объяснение:
Дана трапеция ABCD.
ВС и AD - основания.
Диагональ BD делится точкой О так, что BO/OD=2/7 .
1) Угол СВD = углу BDA (накрет лежащие углы при пересечении параллельных прямых ВС и АД секущей ВД).
2) Угол ВСА = углу САД ( накрест лежащие углы при пересечении параллельных прямых ВС и АД секущей СА)
3) Треугольники ВСО и АОД:
1). Угол СВД = углу ВДА
2). Угол ВСА = углу САД
Из этого следует , что треугольники ВСО и АОД подобные по первому признаку подобия треугольников, значит коэффициент подобия равен: BO/OD=2/7
4) Пусть:
Вс = 2х,
АД = 7 х,
ВС+АД = 36
9х=36
х=4
АД = 28
ВС = 8
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см².
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора на ходим сторону ЕD треугольника ECD:
ED²=CD²−CE²;
ED²=252−152;
ED=(252−152
ED=20 см.
Суммы противоположных сторон трапеции равны, так как в трапецию вписана окружность.
BC + AD = AB + CD;
BC = FE,
Пусть BC = x,
Тогда x+20+x+20=25+25;
x=5.
Получается:
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S = BC + AD2 * EC = 5 + 452*15 = 375 см².
AD = 28.
ВС = 8.
Объяснение:
Дана трапеция ABCD.
ВС и AD - основания.
Диагональ BD делится точкой О так, что BO/OD=2/7 .
1) Угол СВD = углу BDA (накрет лежащие углы при пересечении параллельных прямых ВС и АД секущей ВД).
2) Угол ВСА = углу САД ( накрест лежащие углы при пересечении параллельных прямых ВС и АД секущей СА)
3) Треугольники ВСО и АОД:
1). Угол СВД = углу ВДА
2). Угол ВСА = углу САД
Из этого следует , что треугольники ВСО и АОД подобные по первому признаку подобия треугольников, значит коэффициент подобия равен: BO/OD=2/7
4) Пусть:
Вс = 2х,
АД = 7 х,
ВС+АД = 36
9х=36
х=4
АД = 28
ВС = 8
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см².
Объяснение:
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора на ходим сторону ЕD треугольника ECD:
ED²=CD²−CE²;
ED²=252−152;
ED=(252−152
ED=20 см.
Суммы противоположных сторон трапеции равны, так как в трапецию вписана окружность.
BC + AD = AB + CD;
BC = FE,
Пусть BC = x,
Тогда x+20+x+20=25+25;
x=5.
Получается:
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S = BC + AD2 * EC = 5 + 452*15 = 375 см².