Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
Если вся диагональ = 6√3, то тогда половина диагонали = 3√3. ABCD - ромб, значит диагонали пересекаются под прямым углом, тогда мы можем найти угол в одном из четырёх прямоугольных треугольников. Рассмотрим треугольник BOC (угол BOC = 90°). BC - 6см, BO - 3√3 Теперь можно найти синус угла BCO по противолежащему катету и гипотенузе: 3√3/6=sin3√2=60° Т.к мы ищем углы ромба, то весь угол С = 120° (диагональ ромба делит угол пополам) Угол С=А=120° (т.к ABCD - ромб) Значит на два остальных угла приходится 120°, тогда два оставшихся угла = 60° каждый. ответ: 120°, 120°, 60°, 60°.
Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3.
-------
Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ.
Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ.
АС и ВС - секущие при параллельных прямых, отсюда
треугольники А1СВ1 и АСВ - подобны.
Из их подобия следует отношение
А1В1:АВ=2:3
А1В1:15=2:3
3 А1В1=30
А1В1=10 см
ABCD - ромб, значит диагонали пересекаются под прямым углом, тогда мы можем найти угол в одном из четырёх прямоугольных треугольников.
Рассмотрим треугольник BOC (угол BOC = 90°).
BC - 6см, BO - 3√3
Теперь можно найти синус угла BCO по противолежащему катету и гипотенузе:
3√3/6=sin3√2=60°
Т.к мы ищем углы ромба, то весь угол С = 120° (диагональ ромба делит угол пополам)
Угол С=А=120° (т.к ABCD - ромб)
Значит на два остальных угла приходится 120°, тогда два оставшихся угла = 60° каждый.
ответ: 120°, 120°, 60°, 60°.