Координаты вершин пирамиды ABCD задаются как A (2; -2; 2), B (0: -5; 2), C (-4; 2; -2), D (5; 0; 2). Прямая AB перпендикулярна плоскости ADS. Докажи это
Прямоугольный треугольник является половиной Прямоугольника. Равенства Прямоугольного треугольника: 1)если два катета одного Прямоугольного треугольника соответственно равны двум катетам другого треугольника , то треугольники равны . 2)если гипотенузаза и острый угол одного Прямоугольного треугольника соответственно равны гипотенузе и острому углу другого треугольника , то треугольники равны. 3)если катет и острый угол одного треугольника соответственно равны катету и острому углу другого треугольника , то треугольники равны. 4)если катет и гипотенуза одного треугольника соответственно равны катету и гипотенузе другого треугольника , то треугольники равны.
Пусть треугольник АВС, где В вершина, а А,С вершины при основании. ВН высота, АМ- биссектриса, а точка К, точка пересечения биссектрисы и высоты.
Определим длину высоты ВН.
ВН = ВК + КН = 7 + 3 = 10 см.
Так как АМ биссектриса угла ВАС, то АК так же биссектриса угла ВАН.
Тогда, по свойству биссектрисы угла: АВ / ВК = АН / КН.
АВ / 7 = АН / 3.
АВ / АН = 7 / 3
Пусть длина отрезка АН = 3 * Х см, тогда АВ = 7 * Х см.
Из прямоугольного треугольника АВН, по теореме Пифагора:
ВН2 = АВ2 – АН2.
100 = 49 * Х2 – 9 * Х2.
Х2 =2,5.
Х=√ 2,5
Тогда АВ = ВС = 7 √2,5
АН = 3√2,5.
Так как АВС равнобедренный, то СН = АН .
Тогда АС = 6√2,5см.
Объяснение:
Равенства Прямоугольного треугольника:
1)если два катета одного Прямоугольного треугольника соответственно равны двум катетам другого треугольника , то треугольники равны .
2)если гипотенузаза и острый угол одного Прямоугольного треугольника соответственно равны гипотенузе и острому углу другого треугольника , то треугольники равны.
3)если катет и острый угол одного треугольника соответственно равны катету и острому углу другого треугольника , то треугольники равны.
4)если катет и гипотенуза одного треугольника соответственно равны катету и гипотенузе другого треугольника , то треугольники равны.