Корабль плывет со скоростью 10 км ч относительно берега пассажир пересекает палубу корабля поперёк со скоростью 4 км ч чему равна скорость пассажира относительно берега
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение Пусть a , b и c катеты и гипотенуза треугольника соответственно. 2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 . Площадь поверхности шара вычисляется по формуле S =4πR² , где R - радиус шара. Можем написать S₁=4πR₁²=4π(a/2)² =πa² ; S₂ =4πR₂²=4π(b/2)² =πb² ; Площадь поверхности наибольшего шара: S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂. * * * c² =a² +b² по теореме Пифагора * * *
Для удобства будем ставить элементы креста по одному. Для начала ставим белый центр наверх и на кубике находим 4 ребра с белым цветом: бело-красное, бело-оранжевое, бело-синее и бело-зеленое. После этого выбираем любое, его мы и будем ставить первым. У нас может возникнуть несколько ситуаций, каждая из которых рассмотрена на картинках ниже.
Если ребро стоит в среднем слое, то просто движениями R или L' ставим их к белому центру.
Но это место может оказаться уже занято другим ребром с белым цветом, поэтому мы должны отвести его в сторону при поворотов U, U' или U2 и поставить нужное нам ребро уже знакомыми поворотами R или L'.
Если же ребро окажется на верхнем или нижнем слое, то движениями F или F' ставим их в средний слой и делаем R или L', как и до этого.
Также ребро может оказаться в нижнем слое и белым цветом смотреть вниз. В таком случае ставим свободное место наверху над ним и поднимаем ребро движением F2.
Таким образом нужно поставить к белому центру все 4 ребра.
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение
Пусть a , b и c катеты и гипотенуза треугольника соответственно.
2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 .
Площадь поверхности шара вычисляется по формуле S =4πR² , где
R - радиус шара.
Можем написать
S₁=4πR₁²=4π(a/2)² =πa² ;
S₂ =4πR₂²=4π(b/2)² =πb² ;
Площадь поверхности наибольшего шара:
S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂.
* * * c² =a² +b² по теореме Пифагора * * *
ответ : S₁+S₂.
Для удобства будем ставить элементы креста по одному. Для начала ставим белый центр наверх и на кубике находим 4 ребра с белым цветом: бело-красное, бело-оранжевое, бело-синее и бело-зеленое. После этого выбираем любое, его мы и будем ставить первым. У нас может возникнуть несколько ситуаций, каждая из которых рассмотрена на картинках ниже.
Если ребро стоит в среднем слое, то просто движениями R или L' ставим их к белому центру.
Но это место может оказаться уже занято другим ребром с белым цветом, поэтому мы должны отвести его в сторону при поворотов U, U' или U2 и поставить нужное нам ребро уже знакомыми поворотами R или L'.
Если же ребро окажется на верхнем или нижнем слое, то движениями F или F' ставим их в средний слой и делаем R или L', как и до этого.
Также ребро может оказаться в нижнем слое и белым цветом смотреть вниз. В таком случае ставим свободное место наверху над ним и поднимаем ребро движением F2.
Таким образом нужно поставить к белому центру все 4 ребра.