3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
2. ∠BOC=116°
4. ∠AOD=30°, ∠DOB=150°
6. подумаю, дополню ответ
8. применима теорема смежных и вертикальных углов
Сумма смежных углов равна 180°
Объяснение:
2. ∠EOD=∠FOB=32°
180-32-32=116
4. ∠AOD+∠AOC=180°. так как к ним добавляется ∠COB и вместе 3 угла составляют 210° легко определить чему равен ∠COB
210-180=30°, ∠COB=30° он же равен углу ∠AOD , значит ∠AOD=30°,
таким образом находим ∠AOC, 180-30=150°, ∠AOC=∠DOB=150°
8. ∠1+∠А=180°
∠А+∠BAC=180°
∠C+∠BCA=180°
∠C+∠2=180°
∠C=∠ACD, ∠BAC=∠BCA, можно смело утверждать что ∠BAC+∠ACD=180°
Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см