1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Имеем трапецию АВСД. Из данных ,что боковая сторона и диагональ основания взаимно перпендикулярны и равны соответственно 15 см и 20 см, то большее основание трапеции равно 25 см (по Пифагору). Находим косинус угла Д. cos Д = (15² + 25² - 20²)/(2*15*25) = 0,6. Синус Д = √(1 - 0,6²) = 0,8. Находим сторону ВС: ВС = АД - 2*СД*cos Д = 25 - 2*15*0,6 = 25 - 18 = 7 см. Средняя линия трапеции в основании призмы и сечения равна: Lср = (25 + 7)/2 = 32/2 = 16 см. Наклонная высота hc сечения равна: 320/16 = 20 см. Высота трапеции h в основании призмы равна 15*sin Д = 15*0,8 = 12 см. Тогда высота призмы H равна: H =√(20² - 12²) = √(400 - 144) = √256 = 16 см. Определяем объём призмы: V = So*H = Lср*h*H = 16*12*16 = 3072 см³.
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов
Из данных ,что боковая сторона и диагональ основания взаимно перпендикулярны и равны соответственно 15 см и 20 см, то большее основание трапеции равно 25 см (по Пифагору).
Находим косинус угла Д.
cos Д = (15² + 25² - 20²)/(2*15*25) = 0,6.
Синус Д = √(1 - 0,6²) = 0,8.
Находим сторону ВС:
ВС = АД - 2*СД*cos Д = 25 - 2*15*0,6 = 25 - 18 = 7 см.
Средняя линия трапеции в основании призмы и сечения равна:
Lср = (25 + 7)/2 = 32/2 = 16 см.
Наклонная высота hc сечения равна: 320/16 = 20 см.
Высота трапеции h в основании призмы равна 15*sin Д = 15*0,8 = 12 см.
Тогда высота призмы H равна:
H =√(20² - 12²) = √(400 - 144) = √256 = 16 см.
Определяем объём призмы:
V = So*H = Lср*h*H = 16*12*16 = 3072 см³.