1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
1) строим произвольную прямую а и произвольную точку А на прямой а,
2) строим прямую b что
3) строим точку В, что ∆АВС - прямоугольный (по построению) и (по построению), значит (т.к. катет противолежащий этому углу равен половине гипотенузы).
б) получаем
(т.к. ∆АОВ - прямоугольный и )
в) делим пополам, получаем 15°.
г) т.к. 120°=180о-60°, то этот угол построен в п.а) - это угол, смежный
д) т.к. 150°= 180°-30°, то этот угол построен в п.а) - это угол смежный
е) т.к. 135°=90°+45°, то строим две перпендикулярные прямые и один из полученных прямых углов делим пополам;
ж) т.к. 165°= 180°-15°, то это угол, смежный построенному в п.в), т.е. углу в 15°.
з) т.к. 75°=90°-15°, то строим угол в 15°, потом строим перпендикуляр к одной из сторон построенного угла, проходящий через его вершину. Один из полученных углов будет 75°.
и) т.к. 105°=90о+15°, то это другой из углов, полученных в пункте
1. 5 ед.
2. а√3 ед
Объяснение:
1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
Привет, вот решение
Построить угол, равный:
а) 30°: б) 60°; в) 15°; г) 120°; д) 150°; е) 135°; ж) 165°; з) 75°; и) 105°
а) План построения:
1) строим произвольную прямую а и произвольную точку А на прямой а,
2) строим прямую b что
3) строим точку В, что ∆АВС - прямоугольный (по построению) и (по построению), значит (т.к. катет противолежащий этому углу равен половине гипотенузы).
б) получаем
(т.к. ∆АОВ - прямоугольный и )
в) делим пополам, получаем 15°.
г) т.к. 120°=180о-60°, то этот угол построен в п.а) - это угол, смежный
д) т.к. 150°= 180°-30°, то этот угол построен в п.а) - это угол смежный
е) т.к. 135°=90°+45°, то строим две перпендикулярные прямые и один из полученных прямых углов делим пополам;
ж) т.к. 165°= 180°-15°, то это угол, смежный построенному в п.в), т.е. углу в 15°.
з) т.к. 75°=90°-15°, то строим угол в 15°, потом строим перпендикуляр к одной из сторон построенного угла, проходящий через его вершину. Один из полученных углов будет 75°.
и) т.к. 105°=90о+15°, то это другой из углов, полученных в пункте