Задача не требует рисунка, т.к. проверяются только формулы.
1. Если высота ромба х см, то сторона ромба, лежащего в основании, равна х+0.5х=1.5х.
2. Сумма стороны и высоты 1.5х+х=7.5, откуда х=7.5/2.5=3/см/, высота 3см, сторона ромба 1.5*3=4.5/см/
3. Площадь полной поверхности состоит из двух площадей оснований ромба и площади боковой поверхности, равной произведению периметра основания на высоту. т.е. 2S₁+S₂=S; где S - площадь полной поверхности, - S₁-площадь основания, S₂ -площадь боковой поверхности.
S₁=4.5*3=13.5/см²/; 2S₁=27/см²/;S=107 см²;
4. S₂=(S-2S₁)=107-27=80/см²/, тогда высота параллелепипеда равна 80/(4.5*4)=40/9
5. Объем равен произведению площади основания на высоту параллелепипеда, т.е. 13.5*40/9=60/см³/
Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
Задача не требует рисунка, т.к. проверяются только формулы.
1. Если высота ромба х см, то сторона ромба, лежащего в основании, равна х+0.5х=1.5х.
2. Сумма стороны и высоты 1.5х+х=7.5, откуда х=7.5/2.5=3/см/, высота 3см, сторона ромба 1.5*3=4.5/см/
3. Площадь полной поверхности состоит из двух площадей оснований ромба и площади боковой поверхности, равной произведению периметра основания на высоту. т.е. 2S₁+S₂=S; где S - площадь полной поверхности, - S₁-площадь основания, S₂ -площадь боковой поверхности.
S₁=4.5*3=13.5/см²/; 2S₁=27/см²/;S=107 см²;
4. S₂=(S-2S₁)=107-27=80/см²/, тогда высота параллелепипеда равна 80/(4.5*4)=40/9
5. Объем равен произведению площади основания на высоту параллелепипеда, т.е. 13.5*40/9=60/см³/
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см