1)проведи диаметр АО, соедини его конец с D. в образовавшемся прямоугольном (опирается на диаметр) треугольнике стороны 6, 8 и 10 (египетский)
2)2 вписанных угла, опирающихся на 1 дугу равны, найди 2 подобных по двум углам прямоугольных треугольника. Из подобия легко ищется боковая сторона
3)нижние отрезки диагоналей (AO и DO, если точка пересечений диагоналей О, равны 4 корня из 2 по "теореме Пифагора" или по легкой формуле для равнобедренного прямоугольного)
4) по теореме Пифагора ищем верхние отрезки диагоналей
5)по теореме Пифагора находим ВD
6)высоту находим, проведя ее из В по теореме Пифагора (нижний отрезок на АD равен 1, т.к. трапеция равнобедренная) По высоте находим площадь
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
5 корней из 2-бок,6-основание,7 -площадь
Объяснение:
основные моменты:
0)трапеция вписанная, а значит равнобедренная
1)проведи диаметр АО, соедини его конец с D. в образовавшемся прямоугольном (опирается на диаметр) треугольнике стороны 6, 8 и 10 (египетский)
2)2 вписанных угла, опирающихся на 1 дугу равны, найди 2 подобных по двум углам прямоугольных треугольника. Из подобия легко ищется боковая сторона
3)нижние отрезки диагоналей (AO и DO, если точка пересечений диагоналей О, равны 4 корня из 2 по "теореме Пифагора" или по легкой формуле для равнобедренного прямоугольного)
4) по теореме Пифагора ищем верхние отрезки диагоналей
5)по теореме Пифагора находим ВD
6)высоту находим, проведя ее из В по теореме Пифагора (нижний отрезок на АD равен 1, т.к. трапеция равнобедренная) По высоте находим площадь