Точки касания поверхности сферы и плоскостей ASB, BSC и ASC - это точки касания касательных к поверхности шара, проведённых из точки S. Все касательные к сфере, проведённые из одной точки, равны. В нашем случае это 4√3 см. Касательная и радиус окружности, проведённый к точке касания, перпендикулярны, значит достаточно рассмотреть один прямоугольный треугольник, образованный радиусом шара ОМ, касательной SM и искомым расстоянием SО, где SO²=SM²+ОМ².
Площадь сферы: S=4πR² ⇒ R=√(S/4π)=√(64π/4π)=4 см. SO²=(4√3)²+4²=64, SO=8 см - это ответ.
Построение можно представить в виде перевёрнутой правильной треугольной пирамиды без основания в которую поместили шар, касающийся своей поверхностью боковых граней пирамиды.
1. Диагонали прямоугольника равны, а также, по свойству параллелограмма, точкой пересечения делятся пополам. Соответственно, EB = DE = AE = EC.
2. Рассмотрим треугольник ВЕС. Так как EB = EС (по выше доказанному), то он равнобедренный. Тогда ∠EBC = ∠ECB = 65° (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника, имеем, что - ∠BEC = 180°-(65°+65°) = 50°.
(Хочу подметить, что ∠DEC тоже находится между диагоналями, но так как он смежный вместе с углом в 50° (острым), то он тупой. А по условию нам нужен не тупой, а острый.)
Все касательные к сфере, проведённые из одной точки, равны. В нашем случае это 4√3 см. Касательная и радиус окружности, проведённый к точке касания, перпендикулярны, значит достаточно рассмотреть один прямоугольный треугольник, образованный радиусом шара ОМ, касательной SM и искомым расстоянием SО, где SO²=SM²+ОМ².
Площадь сферы: S=4πR² ⇒ R=√(S/4π)=√(64π/4π)=4 см.
SO²=(4√3)²+4²=64,
SO=8 см - это ответ.
Построение можно представить в виде перевёрнутой правильной треугольной пирамиды без основания в которую поместили шар, касающийся своей поверхностью боковых граней пирамиды.
Дано:
ABCD - прямоугольник.
АС и DB - диагонали.
Е - точка пересечения диагоналей.
∠DBC = 65°.
Найти:
∠BEC = ?
1. Диагонали прямоугольника равны, а также, по свойству параллелограмма, точкой пересечения делятся пополам. Соответственно, EB = DE = AE = EC.
2. Рассмотрим треугольник ВЕС. Так как EB = EС (по выше доказанному), то он равнобедренный. Тогда ∠EBC = ∠ECB = 65° (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника, имеем, что - ∠BEC = 180°-(65°+65°) = 50°.
(Хочу подметить, что ∠DEC тоже находится между диагоналями, но так как он смежный вместе с углом в 50° (острым), то он тупой. А по условию нам нужен не тупой, а острый.)
ответ: 50°.