Основание треугольника, средняя линия, половины боковых сторон, прилегающие к основанию (не к вершине) образуют равнобокую трапецию суммы длин противоположных сторон трапеции равны если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2 значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника можно еще и угол у основания найти cos(alpha)=(b/2)/a=2/3
Любая геометрическая задача сводится к рассмотрению треугольника, либо пары треугольников, так вот: рассмотрим треугольник АСB, он равнобедренный, т.к., угол С = 90*, а угол А = 45*, чтобы найти угол B= 180-(90+45) = 45*, углы при основании равны, треугольник равнобедренный по 1 свойству. Так же мы знаем, что в равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой, по 4 свойству, соответственно, медиана - это линия, которая проведена из вершины к середине противоположной стороны. Зная длину стороны АB = 4, мы можем вычислить AB=AH+HB, 4=2+2, значит отрезок HB=2 см. Зная, что от является катетом равнобедренного треугольника, по 1 свойству, т.к., у нас имеется угол в 90* и один угол в 45*, значит угол B=45*, мы получаем, что CH=HB=2см.
суммы длин противоположных сторон трапеции равны
если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2
значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника
можно еще и угол у основания найти
cos(alpha)=(b/2)/a=2/3
Ниже рисунок.