Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
Находим угол АОВ с учетом того, что АО и
OB - биссектрисы углов А и В (по свойству
центра вписанной окружности):
AOB = 180-(1/2)А-(1/2)B = 180-((V2)(A+B)) =
180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону AB
треугольника АОВ:
AB =V(6°+102-2*6*10*cos120)
= V36+100-120*(-1/2) = V196 = 14 см.
Зная стороны треугольника АОВ, находим
углы А и В (А = 2*BAO, B =2*АВО) по теореме
Синусов.
sin BAO = sin120*10/14 =
0.866025*10/14 =
0.6185896º.
Угол BAO = arc sin
0.6185896 = 0.6669463 радиан =
38.213211°
Угол А= 2*0.3802512 радиан = 21.786789°.
Угол B = 2*
21.786789=
43.573579º.
Зная углы треугольника ABC и одну сторону
AB = 14 см, находим 2 другие по теореме
Синусов:
BC = 14*sin A/sin C = 14*
0.972069/
0.866025 =
15.71428571 CM.
AC = 14*sin B /sin C = 14*
0.6892855 / 0.866025 =
11.14285714 см.
Находим площадь треугольника АВС по
формуле Герона:
S= V(p(p-a)(p-b)(p-c) =
75.82141 см2.
Здесь р= (а+в+с)/2 =
20.428571 см.
Радиус описанной окружности R = abc / 4S =
8.0829038 CM.
18.
∪ ALB = 72° => <AOB = 72° =>
x = 90-<AOB = 18°.
20.
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
<OAC = 90° => <OAB = <OAC - <BAC => <OAB = 90-40 = 50°
OB == OA => <OAB == <OBA = 50°
<BOA = 180-(50+50) = 80°.
А в 22-ом я пока путаюсь, решу немного позже(сложновато для меня), прости.