Між числами 2 та 162 вставте три таких числа , щоб вони разом з даними були послідовними членами геометричної прогресії. У відповідь запишіть найменше з цих чисел.
Найдите сторону равнобокой трапеции, основания которой равны 10 и 8, а диагонали перпендикулярны боковым сторонам. ––––––––––––––––––––––––––––––––––––––––––––––– Вариант решения. Опустим высоту из тупого угла. Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований. Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда х²=10*1=10 х=√10 см
Теорема: "Если на одной стороне угла отложить равные отрезки и через их концы провести параллельные прямые, пересекающие другую сторону угла, то и на этой стороне угла отложатся равные между собой отрезки". Пусть дан отрезок АВ любой ОПРЕДЕЛЕННОЙ длины. Из точки начала данного отрезка А проводите прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываете 5 РАВНЫХ отрезков ЛЮБОЙ длины. Конец q последнего (пятого) отрезка соединяете с концом В данного Вам отрезка. Затем через концы e - h первых четырех отрезков проводите прямые, параллельные первой qB. Точки пересечения этих прямых с данным Вам отрезком и дадут Вам точки деления отрезка на 5 равных частей. Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая: 1. Проводим окружность 1 радиуса qh c центром в точке q (конец 5-го отрезка) на прямой АС. 2. Проводим окружность 2 радиуса qh c центром в точке m (точка пересечения окружности 2 с прямой qB). 3. Проводим окружность 3 радиуса qh c центром в точке h на прямой АС. 4. Через точки h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn -ромб по построению, так как все стороны равны радиусу qh.
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см
Пусть дан отрезок АВ любой ОПРЕДЕЛЕННОЙ длины.
Из точки начала данного отрезка А проводите прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываете 5 РАВНЫХ отрезков ЛЮБОЙ длины. Конец q последнего (пятого) отрезка соединяете с концом В данного Вам отрезка.
Затем через концы e - h первых четырех отрезков проводите прямые, параллельные первой qB.
Точки пересечения этих прямых с данным Вам отрезком и дадут Вам точки деления отрезка на 5 равных частей.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh c центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh c центром в точке m (точка пересечения окружности 2 с прямой qB).
3. Проводим окружность 3 радиуса qh c центром в точке h на прямой АС.
4. Через точки h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn -ромб по построению, так как все стороны равны радиусу qh.