1) периметр= 20 см потому что диагонали ромба пересекаются под прямым углом образовывая прямоугольный треугольник , за теоремой Пифагора находим сторону ромба 5 см
площадь считаем за формулой 1/2 диагональ на диагональ
S=1/2×d1×d2=1/2×6×8=24cм²
2) треугольник ACD прямоугольный с углом 30° за свойством угла против угла 30° CD=6 см значит АВ=6 см
у правильной трапеции углы при основе равны , значит угол А равен углу Д равен 60° . Поскольку угол САД равен 30 то угол САВ тоже равен 30
за свойством 2 параллельных прямых и сечной угол АСВ тоже равен 30 тоесть треугольник АСВ равнобедренный и ВС равен 6 см
высота трапеции √27 потому что , если опустить перпендикуляр с точки С на АД то за теоремой Пифагора можно найти высоту
1) периметр= 20 см потому что диагонали ромба пересекаются под прямым углом образовывая прямоугольный треугольник , за теоремой Пифагора находим сторону ромба 5 см
площадь считаем за формулой 1/2 диагональ на диагональ
S=1/2×d1×d2=1/2×6×8=24cм²
2) треугольник ACD прямоугольный с углом 30° за свойством угла против угла 30° CD=6 см значит АВ=6 см
у правильной трапеции углы при основе равны , значит угол А равен углу Д равен 60° . Поскольку угол САД равен 30 то угол САВ тоже равен 30
за свойством 2 параллельных прямых и сечной угол АСВ тоже равен 30 тоесть треугольник АСВ равнобедренный и ВС равен 6 см
высота трапеции √27 потому что , если опустить перпендикуляр с точки С на АД то за теоремой Пифагора можно найти высоту
площадь = (6+12)/2×√27= 9√27 см²
3) и 4) прости, не знаю
Прямоугольный треугольник с катетам 4 см вписан в окружность. найдите площадь правильного шестиугольника, описанного около данной окружности.
Объяснение:
Дано : ΔАВС вписан в окружность, ∠С=90° , СА=СВ=4 см, правильный шестиугольник описан около данной окружности.
Найти :S(правильного шестиугольника).
ΔАВС-прямоугольный, ∠С=90° , значит опирается на дугу в 180°⇒АВ диаметр. Найдем гипотенузу АВ по т. Пифагора
АВ=√( 4²+4²)=2√2 (см). Поэтому R=1/2*АВ=√2.
Шестиугольник описан около данной окружности , значит Для него √2 является радиусом вписанной окружности ,r₆= ( a₆√3) /2⇒
√2=( a₆√3) /2 или a₆=(2√2) /√3 (см)
S=1/2*Р*r
S=1/2*(6*(2√2) /√3 )*√2=12/√3=4√3 (cм²)