Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
Пусть данная трапеция АВСD, отрезок СН – её высота. Так как АВСD прямоугольная трапеция, ВА⊥АD и СН⊥АD. ⇒ АВ=СН. По условию ВС=СН, ⇒ АВСН - квадрат. АН=ВС=СН=24. Косинус угла есть отношение катета, прилежащего углу, к гипотенузе. cos∠D=HD:CD
Примем коэффициент отношения НD:СD равным а. Тогда НD=3а, СD=а√13. Из прямоугольного ∆ СНD по т.Пифагора СН²=СD²-НD² 576=13а²-9а² ⇒ а=12, а НD=3а=36. Большее основание АD=AH+HD=24+36=60 (ед. длины).
Или:
СD=СН:sin∠D. Из основного тригонометрического тождества sin∠D=√(1-cos*D)=√(1-9/13)=2/√13 Гипотенуза СD=24:(2/√13)=12√13, откуда HD=CD•cos∠D=12√13•3:√13=36. Основание АD=24+36=60 (ед. длины)
Рисунок во вложении.
Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
ответ: 9см.
Пусть данная трапеция АВСD, отрезок СН – её высота. Так как АВСD прямоугольная трапеция, ВА⊥АD и СН⊥АD. ⇒ АВ=СН. По условию ВС=СН, ⇒ АВСН - квадрат. АН=ВС=СН=24. Косинус угла есть отношение катета, прилежащего углу, к гипотенузе. cos∠D=HD:CD
Примем коэффициент отношения НD:СD равным а. Тогда НD=3а, СD=а√13. Из прямоугольного ∆ СНD по т.Пифагора СН²=СD²-НD² 576=13а²-9а² ⇒ а=12, а НD=3а=36. Большее основание АD=AH+HD=24+36=60 (ед. длины).
Или:
СD=СН:sin∠D. Из основного тригонометрического тождества sin∠D=√(1-cos*D)=√(1-9/13)=2/√13 Гипотенуза СD=24:(2/√13)=12√13, откуда HD=CD•cos∠D=12√13•3:√13=36. Основание АD=24+36=60 (ед. длины)