В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
объяснение:
точки а (-5; -4), в (-4; 3), с (-1; -1) являются вершинами треугольника авс.
докажите, что треугольник авс равнобедренный.
длина стороны |ав| = √((bx - ax)² + (by - ay)²) = √((-4 - (-5))² + (3 - (-4))²) = √50 = 5√2 ≈ 7.07;
длина стороны |вc| = √((-1 - (-4))² + (-1 - 3)²) = 5;
длина стороны |ca| = √((-5 - (-1))² + (-4 - (-1))²) = 5;
|вc| = |ca| это значит, что треугольник авс равнобедренный;
составьте уравнение окружности, имеющий центр в точке с и проходящий через точку в.
принадлежит ли окружности точка а?
центр в точке с (-1; -1); радиус 5; уравнение окружности; (x+1)²+(y+1)²=5²;
проверяем: принадлежит ли окружности точка а; подставляем её координаты в уравнение;
((-5)+1)²+((-4)+1)²=5²; 25 = 25; точка а принадлежит окружности;
найдите длину медианы, проведенной к основанию треугольника.
найдем точку f - середина стороны ab: fx = (-5 + (-4))/2 = -4.5; fy = (-4 + 3)/2 = -0.5;
f (-4.5; -0.5); с (-1; -1); длина медианы cf: |cf| = √((-3.5)²+0.5²) = √12.5 = 5/√2 ≈ 3.54;
составьте уравнение прямой, проходящей через точки а и с.
уравнение прямой ас: (x+1)/4 = (y+1)/3; y = 3x/4 - 3/4;