а) Углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в ΔABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что ΔEDM — равносторонний (так как все углы по 60°), то есть EM = ED = MD ~ x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.
б) Из ΔABE получаем, что Тогда по теореме Пифагора из ΔADE получаем:
1) ∠E--общий для треугольников ΔΕΒС и ΔЕАD. Также, поскольку основы трапеции АD и ΒС параллельны, то DС--секущая, поэтому углы
∠ΕСВ=∠ЕDА как соответсвенные.
АВ также секущая, поэтому и ∠ΕΒС=∠ЕАD как соответсвенные.
Таким образом, ΔΕΒС и ΔЕАD подобные по трём углам ΔΕΒС ~ ΔЕАD.
Значит, все их соответствующие стороны пропорциональны => АD/ΒС=АЕ/ВЕ
7/3=14/ВЕ
ВЕ=3*14/7=3*2=6 см
2) Это треугольники ΔMEK~ΔBAK~ΔBEA~ΔMAN (т.к. согласно свойствам секущей, их соответсвенные углы равны, и их три угла равны)
3) По свойствам прямоугольника, диагонали точкой пересечения делятся попалам и они равны => OD=OC=24/2=12 см
Поэтому ΔCOD-равнобедренный
<COD=<BOA как вертикальные
<COD+<АOD=180°, т.к. они смежные
Обозначим <COD=х, <АOD=х+60°
Тогда х+х+60°=180°
2х+60°=180°
2х=180°-60°
2х= 120° | : 2
х=60°
Т.к. ΔCOD-равнобедренный, то если угол при его вершине равен 60°, то и два его других угла будут равны 60°, а значит это равносторонний треугольник, поэтому все его стороны равны 12 см
а) Углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в ΔABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что ΔEDM — равносторонний (так как все углы по 60°), то есть EM = ED = MD ~ x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.
б) Из ΔABE получаем, что Тогда по теореме Пифагора из ΔADE получаем:
Отсюда получаем, что
Объяснение:
1) ∠E--общий для треугольников ΔΕΒС и ΔЕАD. Также, поскольку основы трапеции АD и ΒС параллельны, то DС--секущая, поэтому углы
∠ΕСВ=∠ЕDА как соответсвенные.
АВ также секущая, поэтому и ∠ΕΒС=∠ЕАD как соответсвенные.
Таким образом, ΔΕΒС и ΔЕАD подобные по трём углам ΔΕΒС ~ ΔЕАD.
Значит, все их соответствующие стороны пропорциональны => АD/ΒС=АЕ/ВЕ
7/3=14/ВЕ
ВЕ=3*14/7=3*2=6 см
2) Это треугольники ΔMEK~ΔBAK~ΔBEA~ΔMAN (т.к. согласно свойствам секущей, их соответсвенные углы равны, и их три угла равны)
3) По свойствам прямоугольника, диагонали точкой пересечения делятся попалам и они равны => OD=OC=24/2=12 см
Поэтому ΔCOD-равнобедренный
<COD=<BOA как вертикальные
<COD+<АOD=180°, т.к. они смежные
Обозначим <COD=х, <АOD=х+60°
Тогда х+х+60°=180°
2х+60°=180°
2х=180°-60°
2х= 120° | : 2
х=60°
Т.к. ΔCOD-равнобедренный, то если угол при его вершине равен 60°, то и два его других угла будут равны 60°, а значит это равносторонний треугольник, поэтому все его стороны равны 12 см
PΔCOD=12*3=36 см