1) на первом рисунке углы при основании равны. Это и есть описание равнобедренного треугольника.
на втором рисунке один угол 90, ещё один 45, зная что сумма всех углов в треугольнике 180, выясним что и неизвестный нам угол тоже 45. Получается углы при основании равны и равны 45 градусам.
2) 1-ое утверждение верно потому что медиана делит сторону на которую падает пополам. Следовательно эти части бдут равны.
4-ое утверждение верно потому что биссектриса делит угол пополам. Следовательно разделенный углы образованные делением угла ABC равны.
5-ое утверждение верно потому что высота падает под углом 90 градусов.
) Построение равнобедренного треугольника по основанию и боковой стороне. 1. Проводим прямую "а". 2. Замеряем циркулем длину данного нам основания. 3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию. 3. Замеряем циркулем длину данной нам боковой стороны. 4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а". 5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В. 6. Соединяем точки А,В и с. Получен искомый треугольник. 2) Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.
1) 1 и 2 рисунки
2) 1, 4, 5 утверждения верны
Объяснение:
1) на первом рисунке углы при основании равны. Это и есть описание равнобедренного треугольника.
на втором рисунке один угол 90, ещё один 45, зная что сумма всех углов в треугольнике 180, выясним что и неизвестный нам угол тоже 45. Получается углы при основании равны и равны 45 градусам.
2) 1-ое утверждение верно потому что медиана делит сторону на которую падает пополам. Следовательно эти части бдут равны.
4-ое утверждение верно потому что биссектриса делит угол пополам. Следовательно разделенный углы образованные делением угла ABC равны.
5-ое утверждение верно потому что высота падает под углом 90 градусов.
1. Проводим прямую "а".
2. Замеряем циркулем длину данного нам основания.
3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию.
3. Замеряем циркулем длину данной нам боковой стороны.
4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а".
5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.
6. Соединяем точки А,В и с.
Получен искомый треугольник.
2)
Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.