Медиана, проведенная к боковой стороне равнобедренного RQS, разбивает его на два треугольника так, что периметр одного треугольника на 2см меньше периметра другого. Основание треугольника равно 16см. Найти боковую сторону данного треугольника.
Если правильно понял то вот: Построение отрезка, равного данному. Дан - отрезок AB. Требуется - построить равный ему отрезок (такой же длины). Для этого - построим произвольный луч с началом в новой точке C. Циркулем замерим данный отрезок AB. Теперь тем же самым раствором циркуля на построенном луче от его начала - C - отложим отрезок, равный данному. Для этого иглой циркуля упираем в начало луча C, а пишущей ножкой проводим дугу до пересечения с лучом. Точку пересечения назовём D. Отрезок CD равен отрезку AB. Построение закончено.
В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Построение отрезка, равного данному. Дан - отрезок AB. Требуется - построить равный ему отрезок (такой же длины). Для этого - построим произвольный луч с началом в новой точке C. Циркулем замерим данный отрезок AB. Теперь тем же самым раствором циркуля на построенном луче от его начала - C - отложим отрезок, равный данному. Для этого иглой циркуля упираем в начало луча C, а пишущей ножкой проводим дугу до пересечения с лучом. Точку пересечения назовём D. Отрезок CD равен отрезку AB. Построение закончено.
В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²