Меньшее основание прямоугольной трапеции равны 6 см большая Боковая сторона трапеции равна 12 см и образует с основанием угол 60 градусов найти большее основание трапеции
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной. По свойству касательной и секущей ОК²=ОМ·ОN. Пусть ОМ=х, тогда ОN=OM+MN=x+6, 4²=x(х+6), х²+6х-4=0, х1=-8, отрицательное значение не подходит, х2=2. ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом. Пусть радиус окружности около тр-ка КMN равен r. На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r. Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды. ∠MKN=α, ∠MPN=β. Обратим внимание, что углы α и β - это половина градусной меры хорды. MN=2R·sinβ ⇒ sinβ=MN/2R. MN=2r·sinα ⇒ sinα=MN/2r. Сравним синусы, предположив, что они равны. MN/2R=MN/2r. 1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα. Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°. В этом диапазоне синус угла тем больше, чем больше его градусная мера, значит α>β. Доказано.
S = 544 ед²
Объяснение:
Треугольник АВС. Медианы АР и ВН, пересекаясь в точке О, образуют прямоугольные треугольники АОН и ВОР.
В треугольнике АОН по Пифагору: АН² = АО² + ОН², а в треугольнике ВОВ - ВР² = ВО² + ОР².
Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. =>
АО =(2/3)*АР; ОР = (1/3)*АР; ОН = (1/3)*ВН.
Тогда по Пифагору: АН² = (2*АР/3)² + (ВН/3)² =>
9*АН² = 4*АР² + ВН² (1) . Аналогично
9*ВР² = АР² + 4*ВН² (2) .
АН = АС/2 =22 ед. ВР = ВС/2 =14 ед. ( Так как АР и ВН - медианы).
Решая систему двух уравнений (1) и (2) с двумя неизвестными, получаем:
ВН² = 180; АР² = 1044. Подставляем эти значения в уравнение: АВ² = ВО² + АО² (по Пифагору в треугольнике АВО ), получим:
АВ² = (4/9)*(ВН² + АР²) = 4*(180+1044)/9 = 544 ед².
Это и есть площадь квадрата со стороной АВ.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.