Метод координат: Дана правильная четырехугольная призма АВСDA1B1C1D1 с боковым ребром 6 и ребром при основании 4. Точка N делит ребро А1D1 в отношении 1 : 3, считая от вершины А1. Точка М – середина ребра DD1. Найдите, используя метод координат,
1) длину отрезка NM;
2) угол C1NM;
3) угол между прямыми AN и MC1;
4) уравнение плоскости ВDD1 (по вектору нормали и точке);
5) угол между прямой AN и плоскостью BDD1;
6) уравнение плоскости NMC1 (по трем точкам);
7) расстояние от точки В до плоскости NMC1.
Так же систему координат нужно выбрать из точки B.
ABCD - равнобедренная трапеция BC и AD - основания трапеции ВD=10м - диагональ BK - высота угол BDK=60 градусов
Рассмотрим треугольник BDK - он прямоугольный т.к. ВК перпендикулярно AD. sinBDK=BK/BD BK=sin60*BD=(корень из 3)/2*10=5 корней из 3 По теореме Пифагора: BD^2=BK^2+KD^2 KD^2=BD^2-BK^2 KD^2=100-75=25 KD=5 По свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований)
KD=(BC+AD)/2=5 Тогда S=(BC+AD)/2*BK=5*5 корней из 3=25 корней из 3
1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
BC и AD - основания трапеции
ВD=10м - диагональ
BK - высота
угол BDK=60 градусов
Рассмотрим треугольник BDK - он прямоугольный т.к. ВК перпендикулярно AD. sinBDK=BK/BD
BK=sin60*BD=(корень из 3)/2*10=5 корней из 3
По теореме Пифагора: BD^2=BK^2+KD^2
KD^2=BD^2-BK^2
KD^2=100-75=25
KD=5
По свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований)
KD=(BC+AD)/2=5
Тогда S=(BC+AD)/2*BK=5*5 корней из 3=25 корней из 3