Дается один из возможных вариантов решения. ( На сайте есть и другой).
Пусть параллелограмм будет АВСD,
сторона АD=2√3, диагональ АС=√19, ∠ ВАD=30°
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180° ( из свойства углов при параллельных прямых и секущей).
Тогда ∠ АDС=150°
По т.косинусов из ∆ АDС:
АС²=АD² +СD² - 2•AD•CD•cos ∠ADC
Примем СД=х
cos150ª= -cos30º= -(√3):2
19=12+х²-2•2√3•(-√3):2 ⇒
х²+6х-7=0⇒
D=b²-4ac=6²-4•-7=64
x₁=-(6)+√64):2=1;
х₂= -(6)-√64):2=-7 ( не подходит)
Противоположные стороны параллелограмма равны. АВ=CD
Меньшая сторона параллелограмма равна 1 см.
Дано: коло (О; R), AB - хорда, АВ= 6√2 см, ◡АВ= 90°
Знайти: С (довжину кола)
Розв'язання.
Проведемо радіуси ОА і ОВ до кінців хорди АВ. OA=OB=R.
∠АОВ — центральний, це означає що його градусна міра дорівнює градусній мірі дуги, на яку він спирається.
∠АОВ= ◡АВ= 90°.
Як бачимо, ΔАОВ - прямокутний рівнобедрений (оск. ∠АОВ= 90°, ОА=ОВ=R).
Хорда АВ дорівнює 6√2 см, тоді за т.Піфагора у ΔАОВ:
АВ²= ОА²+ОВ²;
(6√2)²= 2ОА²;
72= 2ОА²;
ОА²= 36;
ОА= 6 (–6 не може бути).
Отже, R= 6см.
Тепер знаходимо довжину кола.
За формулою С= 2πR.
С= 2•π•6;
С= 12π, або С= 12•3,14= 37,68 (см)
Відповідь: 12π см або 37,68 см.
Дается один из возможных вариантов решения. ( На сайте есть и другой).
Пусть параллелограмм будет АВСD,
сторона АD=2√3, диагональ АС=√19, ∠ ВАD=30°
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180° ( из свойства углов при параллельных прямых и секущей).
Тогда ∠ АDС=150°
По т.косинусов из ∆ АDС:
АС²=АD² +СD² - 2•AD•CD•cos ∠ADC
Примем СД=х
cos150ª= -cos30º= -(√3):2
19=12+х²-2•2√3•(-√3):2 ⇒
х²+6х-7=0⇒
D=b²-4ac=6²-4•-7=64
x₁=-(6)+√64):2=1;
х₂= -(6)-√64):2=-7 ( не подходит)
Противоположные стороны параллелограмма равны. АВ=CD
Меньшая сторона параллелограмма равна 1 см.
Дано: коло (О; R), AB - хорда, АВ= 6√2 см, ◡АВ= 90°
Знайти: С (довжину кола)
Розв'язання.
Проведемо радіуси ОА і ОВ до кінців хорди АВ. OA=OB=R.
∠АОВ — центральний, це означає що його градусна міра дорівнює градусній мірі дуги, на яку він спирається.
∠АОВ= ◡АВ= 90°.
Як бачимо, ΔАОВ - прямокутний рівнобедрений (оск. ∠АОВ= 90°, ОА=ОВ=R).
Хорда АВ дорівнює 6√2 см, тоді за т.Піфагора у ΔАОВ:
АВ²= ОА²+ОВ²;
(6√2)²= 2ОА²;
72= 2ОА²;
ОА²= 36;
ОА= 6 (–6 не може бути).
Отже, R= 6см.
Тепер знаходимо довжину кола.
За формулою С= 2πR.
С= 2•π•6;
С= 12π, або С= 12•3,14= 37,68 (см)
Відповідь: 12π см або 37,68 см.