MK - бісектриса прямокутного трикутника MPC, у якого <C = 90*, а <CMP = 60*. Знайдіть катет CP цього трикутника, якщо CK = 3 дм. Можете розписать пожайлуста.
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Я не уверена с правильным ответом. ну все же
С тупых углоа В и Д я провела бисектрисы ВК и ДМ. АК = МС = 17 см, КД = ВМ = 12см.
Угол В = углу Д, то значит бисектрисы поделят их на четыре равных угла:
Уголы АВК = КВС = АДМ = СДМ.
Так как это параллелогамм, то бисектрисы будут равны и паралельные.
Посмотри угол АДМ и угол АКВ они будут равны как относительные.
Отсюда вывод, если угол АВК = углу АКВ, значит теугольник АВК равнобедренной.
Где АК = АВ = 17см.
АВ = СД = 17 см
АД = ВС = 17 + 12 = 29
Р = 17 + 17 + 29 + 29 = 92 см