решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
1
1) δавс, ∟авс = 35 °, ∟асв = 83 °, вм и ск -
высоты, пересекаются в н. найходим внс.
2) δавс.
∟а = 180 ° - (∟abc + ∟асв),
∟а = 180 ° - (35 ° + 83 °) = 62 °.
3) δавм.
∟amb = 90 ° (вм - высота),
∟abm = 180 ° - (∟амв + ∟a), ∟abm = 28 °.
4) δквс.
∟вкс = 90 ° (ск - высота),
∟вск = 180 ° - (∟вкс + ∟квс),
∟вск = 55 °, ∟abc = 35 °,
∟abc = ∟abm + ∟mbc, 35 ° = 28 ° + ∟mbc, ∟mbc = 7 °.
5) δнвс.
∟нвс = 7 °, ∟bch = 55 °,
∟внс = 180 ° - (∟hbc + ∟всн),
∟внс = 180 ° - (7 ° + 55 °), ∟bhc = 180 ° - 62 ° = 118 °.
ответ 118
это точно все дано или было что-то еще?
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.