мне нужно. 1. Верны ли утверждения ? Прямые а и b параллельны, если № Утверждение Да / Нет. 1. Угол 1+угол 4=180° 2. угол 5=угол 3 3. угол 2+угол 4=180° 4. угол 6=угол 7. №2 а) По данным рисунка найдите углы треугольника АВС. б) Используя теорему о внешнем угле треугольника, найдите угол А треугольникаАВС. №3. Найти: 1) острые углы ΔАВС; 2) высоту СК, если ВС= 7,8 см. ...
Площадь проекции плоской фигуры на плоскость ω равна произведению площади фигуры на косинус угла между плоскостью фигуры и плоскостью ω.
Найдём высоту проекции трапеции.
Если из конца верхнего основания провести отрезок, равный и параллельный противоположной стороне, то получим равнобедренный треугольник с боковыми сторонами по 5 см и основанием, равным 16 - 10 = 6 см.
Высота h этого треугольника равна высоте трапеции.
h = √(5² - (6/2)²) = 4 см.
Площадь проекции равна: S = ((10 + 16)/2)*4 = 52 см².
РК - средняя линия треугольника АВС, значит точки Р(2;3) и К(-1;2) - середины отрезков АС и ВС соответственно.
Координаты точек А и В найдем из того, что координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Тогда Xa=2*Xp-Xc = 2*(4-0) = 4, Ya=2*Yp-Yc = 2*(3-0) = 6. Xb=2*Xk-Xc = 2*(-1-0) = -2, Yb=2*Yk-Yc = 2*(2-0) = 4.
Итак, мы имеем точки А(4;6) и В(-2;4).
Эти точки принадлежат прямой Ax+By+c=0.
Подставим в уравнение координаты точек А и В и получим систему двух уравнений: 4А+6В=-С (1) и -2А+4В=-С (2). Решим эту систему, выразив А и В через С. Умножим (2) на 2 и сложим (1) и (2):
14В = -3С => В=-(3/14)*С. Подставив это значение в (1), получим А=(1/14)*С. Теперь подставим полученные значения в общее уравнение прямой:
(С/14)*X+(-3C/14)*Y+C=0 и сократим на "С":
(1/14)X -(3/14)Y +1 =0 Или Х-3Y+14=0. Это и есть искомое уравнение прямой, содержащей отрезок АВ.
Проверка: подставим координаты точки А(4;6) в уравнение. Получим 4-18+14=0 => 0=0. И для точки В(-2;4): -2-12+14=0 => 0=0. Точки А и В принадлежат прямой АВ, уравнение найдено верно.
Площадь проекции плоской фигуры на плоскость ω равна произведению площади фигуры на косинус угла между плоскостью фигуры и плоскостью ω.
Найдём высоту проекции трапеции.
Если из конца верхнего основания провести отрезок, равный и параллельный противоположной стороне, то получим равнобедренный треугольник с боковыми сторонами по 5 см и основанием, равным 16 - 10 = 6 см.
Высота h этого треугольника равна высоте трапеции.
h = √(5² - (6/2)²) = 4 см.
Площадь проекции равна: S = ((10 + 16)/2)*4 = 52 см².
Отсюда cos a = 52/(52√2) = 1/√2 = √2/2.
Угол равен 45 градусов.
РК - средняя линия треугольника АВС, значит точки Р(2;3) и К(-1;2) - середины отрезков АС и ВС соответственно.
Координаты точек А и В найдем из того, что координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Тогда Xa=2*Xp-Xc = 2*(4-0) = 4, Ya=2*Yp-Yc = 2*(3-0) = 6. Xb=2*Xk-Xc = 2*(-1-0) = -2, Yb=2*Yk-Yc = 2*(2-0) = 4.
Итак, мы имеем точки А(4;6) и В(-2;4).
Эти точки принадлежат прямой Ax+By+c=0.
Подставим в уравнение координаты точек А и В и получим систему двух уравнений: 4А+6В=-С (1) и -2А+4В=-С (2). Решим эту систему, выразив А и В через С. Умножим (2) на 2 и сложим (1) и (2):
14В = -3С => В=-(3/14)*С. Подставив это значение в (1), получим А=(1/14)*С. Теперь подставим полученные значения в общее уравнение прямой:
(С/14)*X+(-3C/14)*Y+C=0 и сократим на "С":
(1/14)X -(3/14)Y +1 =0 Или Х-3Y+14=0. Это и есть искомое уравнение прямой, содержащей отрезок АВ.
ответ: уравнение прямой, содержащей отрезок АВ : Х-3Y+14=0.
Проверка: подставим координаты точки А(4;6) в уравнение. Получим 4-18+14=0 => 0=0. И для точки В(-2;4): -2-12+14=0 => 0=0. Точки А и В принадлежат прямой АВ, уравнение найдено верно.