Осевое сечение равностороннего конуса-равносторонний треугольник, а равностороннего цилиндра-квадрат. Обозначим радиус конуса R1, а радиус цилиндра R2. По известным формулам полная поверхность конуса S конуса полн.= S осн.+S бок.= пи*R1квадрат+ пи*R1*L=пи* R1квадрат+ пи*R1*2R1=3пи*R1квадрат. Где L=2R1 -образующая конуса. Аналогично -полная поверхность цилиндра Sцилиндра полн.= 2Sосн.+ Sбок.=2 пи*R2квадрат +2пи*R2*H=6пи*R2квадрат. Поскольку эти поверхности по условию равны, получим 3пи*R1квадрат=6пи*R2квадрат. Отсюда R1=(корень из2)*R2.
а) У равнобедренного треугольника углы при основании равны; Пусть угол при основании - х, тогда
х+х+30=180(сумма всех углов треугольника = 180°)
2х+30=180
2х=150
х=75
ответ: угол при основании равен 75°
б) 2 варианта решения:
1) Если угол при вершине, противолежащий основанию = 40°, тогда угол при основании - х
2х+40=180
2х=140
х=70;
ответ: остальные углы равны 70°
2) Если угол при основании = 40°, тогда второй угол при основании также равен 40°. Пусть угол противолежащий основанию - х, тогда
40+40+х=180
80+х=180
х=180-80
х=100; ответ: угол, противолежащий основанию равен 100°
в) Угол при основании равен 30°, тогда второй угол при основании также равен 30°(т.к. треугольник равнобедренный)
пусть угол, противолежащий основанию - х, тогда
30+30+х=180
60+х=180
х=180-60
х=120
ответ: угол, противолежащий основанию равен 120°
Осевое сечение равностороннего конуса-равносторонний треугольник, а равностороннего цилиндра-квадрат. Обозначим радиус конуса R1, а радиус цилиндра R2. По известным формулам полная поверхность конуса S конуса полн.= S осн.+S бок.= пи*R1квадрат+ пи*R1*L=пи* R1квадрат+ пи*R1*2R1=3пи*R1квадрат. Где L=2R1 -образующая конуса. Аналогично -полная поверхность цилиндра Sцилиндра полн.= 2Sосн.+ Sбок.=2 пи*R2квадрат +2пи*R2*H=6пи*R2квадрат. Поскольку эти поверхности по условию равны, получим 3пи*R1квадрат=6пи*R2квадрат. Отсюда R1=(корень из2)*R2.