Расстояние от точки до плоскости - это перпендикуляр, опущенный на эту плоскость. 1) Расстояние от середины отр. АВ до плоскости находим как среднюю линию трапеции: (13+17):2=15. 2) Предположим, что плоскость пересекает отр. АВ через его центр. Тогда должны быть равны расстояния от точек А и В до этой плоскости. Это 15. Но у нас имеется разница в 2 (17-15=2 и 15-13=2). Следовательно, расст. от центра отр. АВ до пл-ти=2.
Весь "секрет" в том биссектрисы отсекают от трапеции равнобедренные треугольники, потому что биссектриса с боковой стороной и с обоими основаниями образует одинаковые углы. То есть меньшее основание равно сумме боковых сторон, то есть 13 + 20 = 33; Если теперь провести высоты из концов мньшего основания, то трапеция разобьётся на прямоугольник со сторонами 33 и 12, и два треугольника. Один имеет в качестве гипотенузы боковую сторону 13, и высоту трапеции 12, как один из катетов, откуда второй катет равен 5, аналогично во втором треугольнике гипотенуза 20, один из катетов 12, то есть второй катет 16. То есть проекции боковых сторон на большее основание равны 5 и 16. Ясно, что большее основание равно 33 + 5 + 16 = 54; собственно, уже все найдено. Площадь трапеции (33 + 54)*12/2 = 522;
То есть меньшее основание равно сумме боковых сторон, то есть 13 + 20 = 33;
Если теперь провести высоты из концов мньшего основания, то трапеция разобьётся на прямоугольник со сторонами 33 и 12, и два треугольника. Один имеет в качестве гипотенузы боковую сторону 13, и высоту трапеции 12, как один из катетов, откуда второй катет равен 5, аналогично во втором треугольнике гипотенуза 20, один из катетов 12, то есть второй катет 16. То есть проекции боковых сторон на большее основание равны 5 и 16.
Ясно, что большее основание равно 33 + 5 + 16 = 54; собственно, уже все найдено. Площадь трапеции (33 + 54)*12/2 = 522;