Проводим высоту к основанию. Т.к. треугольник равнобедренный, высота будет делить основание пополам. Боковая сторона равна х.
По т. Пифагора в любом маленьком треугольнике получаем:
h²+144=x²
h=√(x²-144)
Находим площадь трегуольника:
s=½*h*24=12 √(x²-144)
По формуле:
Получем,что
Возводим в квадрат:
х⁴=676х²-97344
х⁴-676х²+97344=0
Решаем с переменной х².
Дискриминант: 676²-4*97344=456976-389376=260²
х²(1)=468, х(1)=6√13
х²(2)=208, х(2)=4√13.
Теперь рассмотрим эти два варианта. Чтобы треугольник был остроугольный, квадрат наибольшей стороны должен быть меньше суммы квадратов двух других сторон. Однако при х= 4√13, сумма квадратов сторона равна: 208+208=416, а квадрат большей стороны: 24*24=576. Значит, такой треугольник будет тупоугольным, что не подходит под условие. Следовательно, х= 6√13
Пусть угол А=2а, то есть биссектриса делит его на два угла, равным а, аналогично с углом В (2в) и углом С (2с).
Рассматриваем треугольник АВО и треугольник ОВС:
По т. о сумме углов треугольника в треугольнике АВО:
110+а+в=180,
в треугольнике ОВС:
с+в+110=180.
Приравниваем, получаем:
110+а+в=110+с+в
а=с
Значит, 2а=2с, а значит, угол С равен углу А, следовательно треугольник АВС - равнобедренный с основание АС.
Дальше:
угол АОС = 360-110-110= 140.
Треугольник АОС, по т. о сумме углов треугольника:
а+с+140=180, но т.к. а=с:
2а+140=180
2а=40, значит угол А=угол С=40.
Тогда угол В по т. о сумме углов трегольника: 180-40-40=100.
Возможно, так:
Проводим высоту к основанию. Т.к. треугольник равнобедренный, высота будет делить основание пополам. Боковая сторона равна х.
По т. Пифагора в любом маленьком треугольнике получаем:
h²+144=x²
h=√(x²-144)
Находим площадь трегуольника:
s=½*h*24=12 √(x²-144)
По формуле:
Получем,что
Возводим в квадрат:
х⁴=676х²-97344
х⁴-676х²+97344=0
Решаем с переменной х².
Дискриминант: 676²-4*97344=456976-389376=260²
х²(1)=468, х(1)=6√13
х²(2)=208, х(2)=4√13.
Теперь рассмотрим эти два варианта. Чтобы треугольник был остроугольный, квадрат наибольшей стороны должен быть меньше суммы квадратов двух других сторон. Однако при х= 4√13, сумма квадратов сторона равна: 208+208=416, а квадрат большей стороны: 24*24=576. Значит, такой треугольник будет тупоугольным, что не подходит под условие. Следовательно, х= 6√13