1) a^+b^2= c^2 → 4+25= = 29 →c= √29 2)b= √(64-9)= √55 3) получаются 4 равных прямоугольных треугольника. а= 3 в= 4 . значит по с √(16+9)= 5 4)d= √(25+16)=√41 5)h= √(49-4)= √45. a= 4. S= 1/2*a*h(a)= 1/2*4*√45= 2√45 ответ S= 2√45 6)берем основания трапеции . 14-6= 8 . из за того что трапеция равнобокая , то сторона маленького треугольника равна 8/2= 4 по теореме Пифагора . боковая сторона трапеции это гипотенуза , а катет = 4 . высота трапеции будет равна 2 катету треугольника . h=√(25-16)=3 ответ высота трапеции равна 3
АС - биссектриса, ∠АСD = ∠ВАС = 35°, как накрестлежащие.
Рассмотрим △АВС : равобедренный, т.к у ромба все стороны равны, значит углы при основании равны.
∠АВС=180° - 35° - 35° = 110°
ответ : 110°
4.
Пусть дан △АВС-равнобедренный , АС-основание = 12 см.
АВ=ВС=10 см. Найдём S△АВС-?
Рассмотрим △АВС : Проведем высоту ВН , △АВС-равнобедренный ⇒ ВН является высотой , медианой и биссектрисой. Образован прямоугольный треугольник АВН, АН = НС = 12/2 = 6 см.
2)b= √(64-9)= √55
3) получаются 4 равных прямоугольных треугольника. а= 3 в= 4 . значит по с √(16+9)= 5
4)d= √(25+16)=√41
5)h= √(49-4)= √45. a= 4. S= 1/2*a*h(a)= 1/2*4*√45= 2√45
ответ S= 2√45
6)берем основания трапеции . 14-6= 8 .
из за того что трапеция равнобокая , то сторона маленького треугольника равна 8/2= 4
по теореме Пифагора . боковая сторона трапеции это гипотенуза , а катет = 4 .
высота трапеции будет равна 2 катету треугольника . h=√(25-16)=3
ответ высота трапеции равна 3
1.
Пусть дан ABCD - прямоугольник, SАВСD = 15 см, АВ = 5 см.
Найдём ВС - ?
По формуле для Sпрямоуг = a×b ⇒ Sпрямоуг = AB×BC
BC=Sпрямоуг /AB
ВС=15/5 = 3 см
ответ : ВС = 3 см
2.
Пусть дан параллелограмм ABCD,∠В= 150°, две стороны 12 и 16 см. Найдём SABCD -?
Из вершины В проведём высоту ВН к стороне АД.
∠А = 180° - ∠В = 180° - 150° = 30°.
Рассмотрим △АВН : ВН является высотой и катетом и находится против ∠30°.
АВ-гипотенуза , значит ВН = АВ : 2 = 12 : 2 = 6 см.
SABCD = ВН × АД = 6 × 16 = 96 см².
ответ : SABCD = 96 см²
3.
Пусть дан ромб АВСD , АС- диагональ , ∠АСD = 35° .Найдём ∠АВС - ?
АС - биссектриса, ∠АСD = ∠ВАС = 35°, как накрестлежащие.
Рассмотрим △АВС : равобедренный, т.к у ромба все стороны равны, значит углы при основании равны.
∠АВС=180° - 35° - 35° = 110°
ответ : 110°
4.
Пусть дан △АВС-равнобедренный , АС-основание = 12 см.
АВ=ВС=10 см. Найдём S△АВС-?
Рассмотрим △АВС : Проведем высоту ВН , △АВС-равнобедренный ⇒ ВН является высотой , медианой и биссектрисой. Образован прямоугольный треугольник АВН, АН = НС = 12/2 = 6 см.
По теореме Пифагора найдём катет ВН :
ВН=√АВ² - АН²
ВН=√64
ВН=8 см
S△АВС=(ВН×АС)/2
S=(8×12)/2
S=48 кв. см
ответ:48 кв.см.
6.
2,4