Пряма BA перетинає площину а в точці А, пряма BC у точці С. На відрізку AB позначили точку D, на відрізку ВС точку E. Побудуйте точку перетину прямої DE з площиною а.
Строим сечение параллелепипеда, как указано в "дано". Сечение параллелепипеда - параллелограмм BED1F. Диагонали его BD1=6, EF=2√3, <EOB = α = 30°, Sinα = 1/2, Cosα = √3/2. Все это дано нам в условии. В этом сечении ЕG перпендикуляр к BD1 и EG параллельна АН (перпендикуляр к диагонали ВD. Точка О - пересечение диагоналей, она делит их пополам. По теореме косинусов EB² = EO²+BO² - 2*EO*BO*Cosα = 3+9 - 9 = 3. EB = √3. Итак, треугольник ВЕО - равнобедренный (ЕВ=ЕО) и точка G делит отрезок ВО пополам (так как ЕG - высота и медиана треугольника ВЕО). Значит BG/GD1 = 1/3. Тогда и ВН/НD = 1/3. В прямоугольном треугольнике ВАD АН - высота из прямого угла на гипотенузу и она равна √ВН*НD (по свойству высоты из прямого угла). Но АН = ЕG = √3/2. 3/4=3ВН², откуда ВН = 1/2. Тогда НD = 3/2. Теперь находим АВ и АD. АВ = √(АН²+ВН²) = √(3/4+1/4) = 1. АD = √(АН²+НD²) = √(3/4+9/4) = √3. ответ: стороны основания параллелепипеда равны 1 и √3. P.S. Если успею, рисунок переделаю. НЕ очень понятный получился...
Сечение параллелепипеда - параллелограмм BED1F. Диагонали его BD1=6, EF=2√3, <EOB = α = 30°, Sinα = 1/2, Cosα = √3/2. Все это дано нам в условии. В этом сечении ЕG перпендикуляр к BD1 и EG параллельна АН (перпендикуляр к диагонали ВD.
Точка О - пересечение диагоналей, она делит их пополам.
По теореме косинусов EB² = EO²+BO² - 2*EO*BO*Cosα = 3+9 - 9 = 3.
EB = √3. Итак, треугольник ВЕО - равнобедренный (ЕВ=ЕО) и точка G делит отрезок ВО пополам (так как ЕG - высота и медиана треугольника ВЕО). Значит BG/GD1 = 1/3.
Тогда и ВН/НD = 1/3. В прямоугольном треугольнике ВАD АН - высота из прямого угла на гипотенузу и она равна √ВН*НD (по свойству высоты из прямого угла). Но АН = ЕG = √3/2.
3/4=3ВН², откуда ВН = 1/2. Тогда НD = 3/2. Теперь находим АВ и АD.
АВ = √(АН²+ВН²) = √(3/4+1/4) = 1.
АD = √(АН²+НD²) = √(3/4+9/4) = √3.
ответ: стороны основания параллелепипеда равны 1 и √3.
P.S. Если успею, рисунок переделаю. НЕ очень понятный получился...
Объяснение:
Дано: ABCD - параллелограмм;
РК║АС
Доказать: РМ=NK
Доказательство:
1) Рассмотрим АМКС.
АМ║СК (ABCD - параллелограмм)
МК║АС (условие)
⇒ АМКС - параллелограмм (по определению)
⇒ АМ=СК (свойство параллелограмма)
2) Рассмотрим PNCA.
АP║СN (ABCD - параллелограмм)
PN║AC (условие)
⇒ PNCA- параллелограмм (по определению)
⇒ АP=СN (свойство параллелограмма)
3) Рассмотрим ΔРМА и ΔNKC
АМ=СК (п.1)
АP=СN (п.2)
∠1=∠2 - соответственные при BC║AD и секущей DK
∠3=∠2 - соответственные при AB║DK и секущей DP
⇒ ∠1=∠3
⇒ ΔРМА = ΔNKC (по двум сторонам и углу между ними)
⇒ PM=NK