В / | \ / | \ / | \ / | \ / | \ А / |___ \ С Н Предположим, что это равносторонний треугольник) Проводим высоту ВН, так как треугольник равносторонний, то она является и высотой, и биссектрисой, и медианой В равностороннем треугольнике все углы = 60° ВН - проекция Нам известна сторона треугольника АВ = а, тогда ВН=(а×√3)/2 ответ: а√3/2
1. Треугольники DOC и АОВ подобны по первому признаку подобия треугольников: два угла одного треугольника соответственно равны двум углам другого. В нашем случае углы DOC и АОВ равны как вертикальные углы, а углы DCA и САВ равны как накрест лежащие углы при пересечении параллельных прямых DC и АВ секущей АС. 2. Выразим ОС как 15-АО 3. Поскольку треугольники подобны, можно записать: АО / ОС = АВ / DC, АО = ОС*АВ / DC AO = (15-AO)*AB / DC AO = (15-AO)*96 / 24 24AO = (15-AO)*96 24AO = 1440 - 96AO 120AO = 1440 AO = 12 см
/ | \
/ | \
/ | \
/ | \
/ | \
А / |___ \ С
Н
Предположим, что это равносторонний треугольник)
Проводим высоту ВН, так как треугольник равносторонний, то она является и высотой, и биссектрисой, и медианой
В равностороннем треугольнике все углы = 60°
ВН - проекция
Нам известна сторона треугольника АВ = а, тогда ВН=(а×√3)/2
ответ: а√3/2
2. Выразим ОС как 15-АО
3. Поскольку треугольники подобны, можно записать:
АО / ОС = АВ / DC,
АО = ОС*АВ / DC
AO = (15-AO)*AB / DC
AO = (15-AO)*96 / 24
24AO = (15-AO)*96
24AO = 1440 - 96AO
120AO = 1440
AO = 12 см