В случае окружности, вписанного в прямоугольный треугольник — точки касания делят все стороны на некие равные отрезки.
То есть: Через точку B — проведены 2 касательные: катет BA & гипотенуза BC.
В точках касания — отрезки друг другу равны(теорема о 2 касательных, проведённых с одной точки), тоесть: BF == BG.
BF == BG ⇒ BF == BG = 6.
Одни и те же действия с отрезками FA & AH, они тоже друг другу равны, так как их касательные проведены с одной точки.
FA == AH = 2.
Точно так же с отрезками HC & GC: HC == GC = x.
По теореме Пифагора:
Вывод: P = 24 см.
Точки A-F-C лежат на прямой Симсона точки B относительно треугольника EGD.
Объяснение:
Основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на прямой Симсона.
Точка B лежит на описанной окружности треугольника EGD (прямые углы EBG и EDG опираются на диаметр EG).
A и С - основания перпендикуляров из точки B на стороны треугольника EGD.
Тогда AC - прямая Симсона точки B относительно треугольника EGD.
(Прямая Симсона пересекает сторону EG в точке F, следовательно BF⊥EG)
В случае окружности, вписанного в прямоугольный треугольник — точки касания делят все стороны на некие равные отрезки.
То есть: Через точку B — проведены 2 касательные: катет BA & гипотенуза BC.
В точках касания — отрезки друг другу равны(теорема о 2 касательных, проведённых с одной точки), тоесть: BF == BG.
BF == BG ⇒ BF == BG = 6.
Одни и те же действия с отрезками FA & AH, они тоже друг другу равны, так как их касательные проведены с одной точки.
FA == AH = 2.
Точно так же с отрезками HC & GC: HC == GC = x.
По теореме Пифагора:
Вывод: P = 24 см.
Точки A-F-C лежат на прямой Симсона точки B относительно треугольника EGD.
Объяснение:
Основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на прямой Симсона.
Точка B лежит на описанной окружности треугольника EGD (прямые углы EBG и EDG опираются на диаметр EG).
A и С - основания перпендикуляров из точки B на стороны треугольника EGD.
Тогда AC - прямая Симсона точки B относительно треугольника EGD.
(Прямая Симсона пересекает сторону EG в точке F, следовательно BF⊥EG)