Пусть дан один равнобедренный треугольник и второй равнобедренный треугольник АВС с равными углам при основаниях, следовательно, и третий угол при вершине одного треугольника равен третьему углу второго.
Эти треугольники подобны. В подобных треугольниках все их элементы пропорциональны, следовательно, точка пересечения биссектрисы угла при основании с высотой второго треугольника делит ее в том же отношении, что в первом, т.е. 5:3
Высота ВН равнобедренного треугольника, проведенная к основанию, является и биссектрисой и медианой. АН=НС.
Имеем две биссектрисы треугольника АВС, которые пересекаются в некой точке О. Точка О пересечения биссектрис треугольника АВС является центром вписанной в него окружности.
Из точки О проведем перпендикуляры ОМ и ОК к боковым сторонам треугольника. М, К и Н - точки касания окружности и сторон треугольника.
ОМ=ОК=ОН= радиусу вписанной окружности.
Пусть коэффициент отношения отрезков высоты равен х.
Тогда ВО=5х, ОН=3х, ОМ=ОК=3х
Треугольники ВОМ и ВОК - египетские,т.к. катет и гипотенуза относятся как 3:5 ⇒
ВМ=ВК=4х ( можно проверить по т.Пифагора)
ВН=3х+5х=8х
Треугольники ВМО и ВНА - подобные, т.к. оба прямоугольные и имеют общий острый угол. Следовательно, треугольник ВНА тоже египетский, и из отношения сторон такого треугольника следует
АВ=10х, АН=6х. Или из подобия треугольников через отношение сходственных сторон
Длину стороны ромба обозначаем через a : AB =AD =BC =CD =a; точка пересечения диагоналей BD и AC → O. ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a ; AC =2AO =a√3 . --- MA ⊥ ( ABCD ) ⇒ MA ⊥ AB и MA ⊥ AD . ΔMAB = ΔMAD и т.к. MA =AB =a ⇒ MB =MD =√(a² +a²) =a√2 , Следовательно ΔMCD = ΔMCB ( по трем сторонам _ MC -общее) и из ΔMAC : MC =√(MA²+ AC²) = √(a²+ 3a²) =2a . --- MC линия пересечения плоскостей MCD и MCB . Проведем в треугольнике ΔMCD высоту DK: DK ⊥ MC (K- основание высоты , K ∈ [ MC] ; MC² > MB² +DC² ⇒ ∠ MDC _тупой ) , точка K соединяем с вершиной B , очевидно BK ⊥ MC из ΔMCD = ΔMCB . Таким образом ∠DKB = α искомый угол . По теореме косинусов из ΔMCD : MD² = MC² +CD² - 2MC*CD*cos∠MCD ⇔ 2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒ sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4 KD =CD*sin∠MCD = (a√7) / 4 (из ΔKCD ). --- из ΔDKO : sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7. α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).
Пусть дан один равнобедренный треугольник и второй равнобедренный треугольник АВС с равными углам при основаниях, следовательно, и третий угол при вершине одного треугольника равен третьему углу второго.
Эти треугольники подобны. В подобных треугольниках все их элементы пропорциональны, следовательно, точка пересечения биссектрисы угла при основании с высотой второго треугольника делит ее в том же отношении, что в первом, т.е. 5:3
Высота ВН равнобедренного треугольника, проведенная к основанию, является и биссектрисой и медианой. АН=НС.
Имеем две биссектрисы треугольника АВС, которые пересекаются в некой точке О. Точка О пересечения биссектрис треугольника АВС является центром вписанной в него окружности.
Из точки О проведем перпендикуляры ОМ и ОК к боковым сторонам треугольника. М, К и Н - точки касания окружности и сторон треугольника.
ОМ=ОК=ОН= радиусу вписанной окружности.
Пусть коэффициент отношения отрезков высоты равен х.
Тогда ВО=5х, ОН=3х, ОМ=ОК=3х
Треугольники ВОМ и ВОК - египетские,т.к. катет и гипотенуза относятся как 3:5 ⇒
ВМ=ВК=4х ( можно проверить по т.Пифагора)
ВН=3х+5х=8х
Треугольники ВМО и ВНА - подобные, т.к. оба прямоугольные и имеют общий острый угол. Следовательно, треугольник ВНА тоже египетский, и из отношения сторон такого треугольника следует
АВ=10х, АН=6х. Или из подобия треугольников через отношение сходственных сторон
ВН:ВМ=АН:ОМ
ВН=3х+5х=8х
8х:4х=АН:МО
АН:МО=2
АН=6х
АВ=ВС=5*2=10х
ВН - медиана, поэтому
АС=6х+6х=12х
Периметр треугольника равен АВ+ВС+АС=48
Р=10х+10х+12х=32х
32х=48
х=1,5 см
АВ=ВС=1,5*10=15 см
АС=1,5*12=18 см
ABCD - ромб ;
∠A =60° ;
MA ⊥ ( ABCD ) ;
MA =AB .
α = ∠ ( (MCD) , (MCB) ) -? (угол между плоскостями )
Длину стороны ромба обозначаем через a : AB =AD =BC =CD =a;
точка пересечения диагоналей BD и AC → O.
ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a ;
AC =2AO =a√3 .
---
MA ⊥ ( ABCD ) ⇒ MA ⊥ AB и MA ⊥ AD .
ΔMAB = ΔMAD и т.к. MA =AB =a ⇒ MB =MD =√(a² +a²) =a√2 ,
Следовательно
ΔMCD = ΔMCB ( по трем сторонам _ MC -общее) и из ΔMAC :
MC =√(MA²+ AC²) = √(a²+ 3a²) =2a .
---
MC линия пересечения плоскостей MCD и MCB .
Проведем в треугольнике ΔMCD высоту DK: DK ⊥ MC (K- основание высоты , K ∈ [ MC] ; MC² > MB² +DC² ⇒ ∠ MDC _тупой ) , точка K соединяем с вершиной B , очевидно BK ⊥ MC из ΔMCD = ΔMCB .
Таким образом ∠DKB = α искомый угол .
По теореме косинусов из ΔMCD :
MD² = MC² +CD² - 2MC*CD*cos∠MCD ⇔
2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒
sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4
KD =CD*sin∠MCD = (a√7) / 4 (из ΔKCD ).
---
из ΔDKO : sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7.
α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).
ответ : 2arcsin (2 /√7) . * * * 2arcsin (2√7 / 7 ) * * * .