Например, можно так. построить циркулем и линейкой два перпендикулярных луча с общим началом. на одном отложить данный отрезок √5, а на другом — два раза √5. соединить полученные точки a и b. по теореме пифагора длина полученного отрезка ab будет равна 5. теперь через a надо провести произвольную прямую и отложить на ней циркулем пять раз некоторый отрезок, получим точки a1, a2, a3, a4, a5 (aa1=a1a2=a2a3=a3a4=a4a5). затем проводим прямую a5b и через точки a1, a2, a3, a4 параллельные ей. по теореме фалеса эти прямые разделят отрезок ab на пять равных частей, то есть отрезки длины 1.другой способ. строим отрезок длины 5 (см. предыдущее решение) . проводим две прямые, пересекающиеся в точке m. на одной из них в разные стороны откладываем отрезки ma = mb = √5. на другой прямой откладываем отрезок mc = 5. теперь описываем вокруг треугольника abc окружность и находим точку d пересечения окружности со второй прямой. по свойству хорд ma·mb = mc·md, поэтому md = 1.
Данная задача имеет два решения,
Р1=27,7см
Р2=31,3см
Объяснение:
В равнобедренном треугольнике боковые стороны равны.
Пусть боковая сторона будет 7,9
Проверяем может ли существовать такой треугольник.
7,9+7,9>11,9
11,9+7,9>7,9
Треугольник может существовать.
Р=2а+b, где а- боковая сторона треугольника
b- основание
Р1=7,9*2+11,9=15,8+11,9=27,7см.
ответ:27,7см.
2)
Пусть боковая сторона треугольника будет 11,7см.
Проверяем, может ли, существовать такой треугольник.
11,7+7,9>11,7
Да, такой треугольник может существовать
Р=2а+b.
Р2=11,7*2+7,9=23,4+7,9=31,3см.
ответ: 31,3см