Можна розв'язувати двома : виконати побудову, або скористатись формулами радіусів. З побудовою швидше.
Отже, якщо побудувати сторону і кола та провести радіуси, отримаємо прямокутний трикутник з гіпотенузою 6 коренів з 3 і катетом 9 у якому прилеглий кут є половиною центрального кута даного многокутника .
Косинус цього кута дорівнює 9 поділити на 6 корінь 3, тобто корінь 3 на 2. Це кут 30 градусів, а отже центральний кут 30 *2= 60 гр.
Многокутник правильний отже його центральний кут дорівнює 360 гр. поділити на кількість сторін. Ділимо 360 на 60 , маємо 6 ( сторін).
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Можна розв'язувати двома : виконати побудову, або скористатись формулами радіусів. З побудовою швидше.
Отже, якщо побудувати сторону і кола та провести радіуси, отримаємо прямокутний трикутник з гіпотенузою 6 коренів з 3 і катетом 9 у якому прилеглий кут є половиною центрального кута даного многокутника .
Косинус цього кута дорівнює 9 поділити на 6 корінь 3, тобто корінь 3 на 2. Це кут 30 градусів, а отже центральний кут 30 *2= 60 гр.
Многокутник правильний отже його центральний кут дорівнює 360 гр. поділити на кількість сторін. Ділимо 360 на 60 , маємо 6 ( сторін).
Объяснение:
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.