ответ:
объяснение:
найти угол между прямой 2x+3y-1=0 и прямой проходящей через точки
m₁ (-1; 2) и m ₂(0; 3) .
уравнение прямой проходящей через точки m₁ (-1; 2) и m ₂(0; 3) :
y - 2 = ( 3 - 2 ) /(0 -(-1) *( x -(-1))⇔ x - y +3 = 0
найдем yгол α между прямой 2x+3y - 1=0 и прямой x - y +3 = 0 :
cosα = |a₁a₂ +b₁b₂| /√( a₁² +b₁²) * √(a₂² +b₂²) =
|2*1 +3*(-1)| /√( 2² +3²) * √(1² +(-1)²) = 1 /√ 13 * √2 ;
cosα = 1/ √26 ; α =arc cos 1/ √26
ответ:
объяснение:
найти угол между прямой 2x+3y-1=0 и прямой проходящей через точки
m₁ (-1; 2) и m ₂(0; 3) .
уравнение прямой проходящей через точки m₁ (-1; 2) и m ₂(0; 3) :
y - 2 = ( 3 - 2 ) /(0 -(-1) *( x -(-1))⇔ x - y +3 = 0
найдем yгол α между прямой 2x+3y - 1=0 и прямой x - y +3 = 0 :
cosα = |a₁a₂ +b₁b₂| /√( a₁² +b₁²) * √(a₂² +b₂²) =
|2*1 +3*(-1)| /√( 2² +3²) * √(1² +(-1)²) = 1 /√ 13 * √2 ;
cosα = 1/ √26 ; α =arc cos 1/ √26
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4