Построим описанную окружность ( О ; R ) около ΔАВС и продолжим прямые АМ и ВН до пересечения с окружностью в точках Р и Е, тогда ВР = ЕС - как хорды, стягивающие равные дуги. Следовательно, ЕСРВ - равнобокая трапеция ⇒ ЕВ || СР. ЕВ⊥АС - по условию ⇒ СР⊥АС. Значит, ∠АСР = 90° ⇒ АР - диаметр окружности. Диаметр окружности делит хорду СВ пополам, соответственно, АР⊥СВ ⇒ ВР = СР = ЕС. Итого, АР⊥СВ, ЕВ⊥АС, но АМ = ВН - по условию ⇒ АР = ВЕ - диаметры окружности, АР∩ВЕ = О - центр окружности. Проводя третий диаметр ТС получаем правильный шестиугольник ATBPCE. Из этого следует, что АВ = ВС = АС - как ме'ньшие диагонали прав. шест-ка ⇒ ΔАВС - равносторонний, что и требовалось доказать.
DE||AC, DE=AC/2 (средняя линия)
∠ADE+∠DAC=180 (внутренние углы при параллельных)
Пусть биссектрисы углов ADE и DAC пересекаются в точке X.
∠ADX+∠DAX =90 => ∠AXD=90
Из точки D можно опустить только один перпендикуляр к прямой AI =>
точки X и I совпадают => DI - биссектриса ∠ADE
В трапеции ADEC биссектрисы трех углов пересекаются в одной точке - трапеция описанная (т.е. имеет вписанную окружность).
В описанном четырехугольнике суммы противоположных сторон равны.
AD+CE =AC+DE
DE =AC/2 =0,5 => AC+DE =1,5 =AD+CE
AB+BC =2(AD+CE) =2*1,5 =3
P(ABC) =AB+BC+AC =3+1 =4
В остроугольном треугольнике ABC медиана AM равна высоте BH, ∠MAB = ∠HBC. Докажите, что треугольник ABC равносторонний.
Дано: ΔАВС - остроугольный, АМ = ВН, ∠МАВ = ∠НВС, СМ = МВ, ВН⊥АС.
Доказать: ΔАВС - равносторонний.
==========================================================
Построим описанную окружность ( О ; R ) около ΔАВС и продолжим прямые АМ и ВН до пересечения с окружностью в точках Р и Е, тогда ВР = ЕС - как хорды, стягивающие равные дуги. Следовательно, ЕСРВ - равнобокая трапеция ⇒ ЕВ || СР. ЕВ⊥АС - по условию ⇒ СР⊥АС. Значит, ∠АСР = 90° ⇒ АР - диаметр окружности. Диаметр окружности делит хорду СВ пополам, соответственно, АР⊥СВ ⇒ ВР = СР = ЕС. Итого, АР⊥СВ, ЕВ⊥АС, но АМ = ВН - по условию ⇒ АР = ВЕ - диаметры окружности, АР∩ВЕ = О - центр окружности. Проводя третий диаметр ТС получаем правильный шестиугольник ATBPCE. Из этого следует, что АВ = ВС = АС - как ме'ньшие диагонали прав. шест-ка ⇒ ΔАВС - равносторонний, что и требовалось доказать.