Точка L середина відрізка з кінцями в точках A(-1;3) і B(4;15). Знайдіть довжину відрізка AB ,координати середини відрізка L та дайте відповідь на запитання : чи належить точка L осі абсцис?
Берем отрезок любой длины. Из его концов, как из центров проводим две окружности радиусо равным длине отрезка. Их точка пересечения вместе с концами отрезка образует равносторонний треугольник. Из вершины этого треугольника опускаем перпендикуляр на противоположную сторону (стандартное построение). А можно просто соединить эту вершину со второй точкой пересечения окружностей- это и будет перпендикуляр.. Легко понять, что этот перпендикуляр-высота, медиана и биссектриса угла равностороннего треугольника и значит образует со стороной угол в 30 градусов. Смежный с не й угол равен 150 градусам.
В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²